• Photonics Research
  • Vol. 10, Issue 9, 2091 (2022)
Xin Meng1, Zhiwei Hu1, Xingda Lu1, Wanxia Cao1, Xichang Zhang1, Haowei Li2, Ying Hu3、4, Wei Yi2、5, and Yanhong Xiao3、4、*
Author Affiliations
  • 1Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
  • 2CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • 3State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
  • 4Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 5CAS Center For Excellence in Quantum Information and Quantum Physics, Hefei 230026, China
  • show less
    DOI: 10.1364/PRJ.450166 Cite this Article Set citation alerts
    Xin Meng, Zhiwei Hu, Xingda Lu, Wanxia Cao, Xichang Zhang, Haowei Li, Ying Hu, Wei Yi, Yanhong Xiao. Tunable non-Hermiticity through reservoir engineering[J]. Photonics Research, 2022, 10(9): 2091 Copy Citation Text show less

    Abstract

    We experimentally demonstrate tunable non-Hermitian coupling in an atomic-vapor cell where atomic coherences in different optical channels are dissipatively coupled through atomic motion. Introducing a far-detuned light wall in the reservoir between the optical channels, we decorate the inter-channel coupling term so that it can be switched from dissipative to coherent. The tunable non-Hermiticity is then confirmed through measurements of the inter-channel light transport where the light-wall-induced phase shift is directly probed. Based on the tunable non-Hermiticity, we further discuss an exemplary scheme in which our setup can serve as a building block for the experimental study of exotic non-Hermitian criticality.
    {ρ˙12(1)=γ12ρ12(1)+Γcρ12(2)Ωc(1)*Ωp(1)γ23,ρ˙12(2)=γ12ρ12(2)+Γcρ12(1)Ωc(2)*Ωp(2)γ23,

    View in Article

    H^=(ga^1a^2g*a^2a^1)eiθ0,

    View in Article

    H^=δa^a^+g0eiθ0b^a^g0eiθ0a^b^+g1c^b^+g1b^c^,

    View in Article

    {ρ˙12(1)=γ12ρ12(1)+Γcρ12(2)Ωc(1)*Ωp(1)γ23,ρ˙12(2)=γ12ρ12(2)+Γcρ12(1)Ωc(2)*Ωp(2)γ23.

    View in Article

    {ρ12(1)=Ωc(1)*Ωp(1)γ23γ12Ωc(2)*Ωp(2)γ23Γcγ122Γc2,ρ12(2)=Ωc(2)*Ωp(2)γ23γ12Ωc(1)*Ωp(1)γ23Γcγ122Γc2.

    View in Article

    {dE(1)dt=Nck¯μ022Vϵ0γ23(E(1)γ+E(2)Γcγ23Ωc(1)Ωc(2)*γ122Γc2),dE(2)dt=Nck¯μ022Vϵ0γ23(E(2)γ+E(1)Γcγ23Ωc(2)Ωc(1)*γ122Γc2),

    View in Article

    H^=(ga^1a^2g*a^2a^1)eiθ0,

    View in Article

    {dE(1)dt=γE(1)+Γceiθ0E(2),dE(2)dt=γE(2)+Γc*eiθ0E(1).

    View in Article

    {Ep,out(1)=(1γLc)Ep,in(1)(t),Ep,out(2)=Γc*eiθ0LcEp,in(1)(t),

    View in Article

    {I1(t)=|(1γLc)Ep,in(1)(t)+Ec(1)|2,I2(t)=|Γc*eiθ0LcEp,in(1)(t)+Ec(2)|2.

    View in Article

    {Ep,out(1)=(1γLc)Ep,in(1)(t)+Γceiθ0LcEp,in(2),Ep,out(2)=(1γLc)Ep,in(2)(t)+Γc*eiθ0LcEp,in(1)(t).

    View in Article

    {I1(t)|1+βei[ϕp(1)(t)ϕc(1)+ϕc(2)ϕp(2)θ0]|2,I2(t)|1+βei[ϕp(1)(t)ϕc(1)+ϕc(2)ϕp(2)+θ0]|2.

    View in Article

    Xin Meng, Zhiwei Hu, Xingda Lu, Wanxia Cao, Xichang Zhang, Haowei Li, Ying Hu, Wei Yi, Yanhong Xiao. Tunable non-Hermiticity through reservoir engineering[J]. Photonics Research, 2022, 10(9): 2091
    Download Citation