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We experimentally demonstrate tunable non-Hermitian coupling in an atomic-vapor cell where atomic coher-
ences in different optical channels are dissipatively coupled through atomic motion. Introducing a far-detuned
light wall in the reservoir between the optical channels, we decorate the inter-channel coupling term so that it can
be switched from dissipative to coherent. The tunable non-Hermiticity is then confirmed through measurements
of the inter-channel light transport where the light-wall-induced phase shift is directly probed. Based on the
tunable non-Hermiticity, we further discuss an exemplary scheme in which our setup can serve as a building
block for the experimental study of exotic non-Hermitian criticality. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.450166

1. INTRODUCTION

Non-Hermitian Hamiltonians arise in quantum systems under-
going particle or information loss to their environment [1,2],
and are responsible for rich and exotic non-Hermitian phenom-
ena such as parity-time (PT) symmetry [3–10], non-Hermitian
criticality [11–15], and non-Hermitian skin effects [16–24]
and topology [16,25–29]. So far, non-Hermitian Hamiltonians
have been experimentally implemented in quantum systems in-
cluding single photons [30–32], atomic gases [33–40], semi-
conductor microcavities [41], nuclear spins in solids [42,43],
trapped ions [44,45], and superconducting qubits [46]. In most
of these experiments, non-Hermiticity is introduced through
postselection under which quantum jump processes are
irrelevant. The resulting conditional dynamics is driven by a
non-Hermitian effective Hamiltonian, and is thus probability-
non-conserving. By contrast, a unique experimental realization
of non-Hermiticity exists in warm atomic-vapor cells where
atomic coherences, also called spin waves [47], in spatially sep-
arated optical channels are dissipatively coupled according to
the optical Bloch equations. Rather than direct particle or en-
ergy dissipation, the loss therein corresponds to the decaying
atomic coherence under atomic thermal motion. In a prior
series of experiments with atomic-vapor cells, (anti-)PT phases
and phase transitions have been observed wherein the coexist-
ence of the PT-related criticality and the quantum nature of the
coherence coupling [48,49] offers intriguing prospects for

applications in quantum control and device design. In these
pioneering experiments, the coupling is nevertheless fixed to
be dissipative, whereas it is desirable for practical purposes that
the non-Hermiticity and the associated exotic features should
be made tunable and on-demand.

In this work, we experimentally demonstrate, in a warm
atomic-vapor cell, an easily switchable non-Hermitian coupling
that can be either dissipative or coherent. As illustrated in
Fig. 1, our setup consists of a pair of optically illuminated re-
gions, or the optical channels, within an ensemble of warm
atoms. The dissipative coupling between the spatially separated
light fields is mediated by the atomic motion transporting and
exchanging atomic coherence (that carries the information of
light) within the two optical channels, and we identify atoms
outside the illuminated regions as a non-Markovian reservoir.
Introducing a far-detuned laser beam (denoted as the “light
wall”) into the reservoir, we achieve a tunable inter-channel
coupling, such that the beam-splitter-type [50–52] interaction
between the two channels can be captured by either a non-
Hermitian or a Hermitian effective Hamiltonian, depending
on the light-wall parameters. We confirm the tunability of
the effective Hamiltonian by characterizing the light-wall-in-
duced phase shift through the inter-channel light-transport
measurements. We then discuss an experimentally accessible
scheme in which the configuration implemented here can be
used as a basic building block for more involved studies of
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non-Hermitian criticality. Our experiment therefore not only
offers a novel scheme for optical device design, but also provides
a flexible tool for the quantum simulation of non-Hermitian
physics.

2. RESULTS

For our experiment, we use a paraffin-wall-coated [53–55]
87Rb vapor cell at a temperature of 40°C, housed within a
four-layer magnetic shield to screen out the ambient magnetic
field. As shown in Fig. 1, external lasers create two spatially
separated optical channels (labeled Ch1 and Ch2) with inter-
channel distance ∼1 cm, where atoms in each channel undergo
standard Λ-type electromagnetically induced transparency
(EIT). Specifically, an external cavity diode laser provides the
light for the probe and control fields with orthogonal circular
polarizations that couple the ground-state Zeeman levels
jF � 2,mF � 0i (labeled as j1i) and jF � 2,mF � 2i
(labeled as j2i) to an excited state jF 0 � 1,mF 0 � 1i (labeled
as j3i) of the D1 line. The control and probe beams have a
diameter of about 1.5 mm, with input power of 80 μW
and 8 μW, respectively. Between the two channels, a circularly
polarized far-off-resonance red-detuned laser beam is shone
through the vapor cell, with an elliptical cross section, about
2.5 cm in length (same as the diameter of the vapor cell) and
7 mm in width. We note that, since the control laser here is
relatively weak, we have EIT instead of Autler–Townes split-
ting (ATS), which is a phenomenon occurring at a much higher
laser power [56–60]. As shown in Section 4, the measured line-
width has a linear dependence on the laser power, and is below
100 Hz. Since the linewidth is much less than the excited-state
linewidth (∼500 MHz Doppler broadened), our measurement
is consistent with that of the EIT.

To measure the EIT spectra of a given channel, we record
the probe field output intensity while sweeping a homogeneous

magnetic field generated by a solenoid inside the magnetic
shield. By contrast, when comparing the probe output of both
channels as we sweep the probe’s phase in one of the channels,
the magnetic field is switched off.

Under the optical Bloch equations, atomic coherences be-
tween the Zeeman states j1i and j2i in the two optical channels
are dissipatively coupled with each other, as atoms traverse the
reservoir under thermal motion. As a key element of our experi-
ment, we introduce a far-detuned light wall in the reservoir,
which shifts the hyperfine energy levels in a state-selective fash-
ion, and imprints an extra phase onto the coherence as atoms
pass through.

Specifically, the equations of motion for the atomic coher-
ences satisfy�

_ρ�1�12 � −γ 012ρ
�1�
12 � Γcρ

�2�
12 −

Ω�1��
c Ω�1�

p

γ23
,

_ρ�2�12 � −γ 012ρ
�2�
12 � Γcρ

�1�
12 −

Ω�2��
c Ω�2�

p

γ23
,

(1)

where ρ�i�12 (i � 1, 2) is the ground-state coherence of the ith
channel, whose total effective decay rate is γ 012 � γ12 � Γc �
Γ�1�
p � Γ�2�

p , where Γ�i�
p � jΩ�i�

c j2
γ23

is the optical pumping rate,
with γ12 and γ23 the decay rate of the coherence between states
j1i, j2i and j2i, j3i, respectively. Ωc and Ωp are the Rabi
frequencies of the control and probe fields, respectively.
Importantly, in the presence of the light wall, the inter-channel
coupling rate Γc is dressed by an extra phase θ0, and replaced
by Γc eiθ0.

The dissipative inter-channel coupling above gives rise to a
beam-splitter-type interaction [61] effectively described by the
Hamiltonian

Ĥ � ℏ�gâ†1â2 − g�â†2â1�eiθ0 , (2)

where â1 (â2) is the annihilation operator for the probe field in
Ch1 (Ch2), and g is a complex coupling coefficient, with its
phase given by ϕ�1�

c − ϕ�2�
c , where ϕ�1,2�

c are the phases of the
control fields in the corresponding optical channel. While
θ0 � 0 in the absence of the light wall, its value is easily tunable
by adjusting the intensity or detuning of the laser generating
the light wall. Notably, when θ0 � π∕2, the Hamiltonian
[Eq. (2)] becomes Hermitian.

To experimentally confirm the analysis above, we first char-
acterize the property of the light wall. In a paraffin-coated cell,
the far-detuned beam of the light wall gives rise to a non-local,
state-selective energy shift. This is because atoms can fly
through the laser beams many times by bouncing off the va-
por-cell wall, their ground-state coherence nearly intact. The
light wall is therefore equivalent to an inhomogeneous global
magnetic field that shifts and inevitably broadens the EIT spec-
trum. The impact of the light wall on the EIT spectrum is
shown in Fig. 2, where the experimentally observed EIT spectra
in Fig. 2(a) agree well with those from Monte-Carlo numerical
simulations [40] in Fig. 2(b). Further, the observed spectral
shift is proportional to the laser power [see Fig. 2(c)], while
inversely proportional to its detuning [see Fig. 2(d)]. These ob-
servations derive from the phase imposed by the light wall, and
form the basis for our control scheme below.

The effective Hamiltonian [Eq. (2)] governs the coupling-
related evolution of the atomic coherences (or, equivalently, the

B field 
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Fig. 1. Schematics of the tunable non-Hermiticity through reservoir
engineering. Each of the two spatially separated optical channels
within the atomic-vapor cell, Ch1 and Ch2, contains collinearly
propagating weak probe and strong control fields (with Rabi frequency
of Ωp and Ωc , respectively) operating under the condition of EIT. For
the so-called “light wall,” we introduce a light beam in between the two
channels, which is far-detuned with respect to the center of theD2 line
transition of 87Rb (5S1∕2, F � 1 to 5P3∕2, F 0 � 0, 1, 2, 3), with a nar-
row elliptical profile, and the same helicity as the control field. The
inter-channel coherence transport is mediated by the atomic motion.
Atoms traversing the light wall gain an average phase shift of θ0 in
ground-state coherence.
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probe fields) as the light traverses the vapor cell. Its impact
therefore can be probed through the light transport where
the light-wall-induced phase shift θ0 manifests itself in the re-
sulting intra- and inter-channel interference. To probe this
phase shift, we first turn off the weak probe in Ch2 and slowly
sweep the phase of the probe field in Ch1. In this case, the
measured output probe field in Ch2 directly corresponds to
the light transported from Ch1, thus containing information
of the light-wall-induced phase shift.

We interfere a small fraction of the control fields with the
probes using a half-wave plate in the output of each channel.
The light-wall-induced phase is manifested in the phase shift
between the measured output intensities of the two channels
[Figs. 3(a)–3(c)], where I 1 ∝ cos θ1 and I 2 ∝ cos�θ0 � θ1�,
consistent with theoretical predictions based on the
Hamiltonian [Eq. (2)] [49]. Here θ1 � ϕ�1�

p − ϕ�1�
c and ϕ�1,2�

p
are the phases of the input probe fields of the corresponding
channels. When the laser power of the light wall increases,
the phase shift should also increase, which is observed in
Fig. 3. For a sufficiently large laser power of 30 mW, the phase
shift can reach π∕2, when the beam-splitter-type interaction
becomes Hermitian. We note that the light-wall-induced phase
θ0 exhibits saturation behavior with increasing laser power,
while the light-wall-induced EIT spectral shift is linear in laser
power. This is because the phase shift θ0 is approximately the
product of the spectral shift and the effective interaction time
between the atoms and the light wall. The interaction time is
roughly the coherence lifetime and is inversely proportional to
the EIT linewidth, which is broadened by the light-wall-
induced effective magnetic field, as shown in Figs. 2(a) and
2(b). We have confirmed this analysis by reproducing the sat-
uration behavior using Monte-Carlo simulations.

To further confirm the impact of the light wall, we study the
output probe intensities without interfering it with the control

fields, while both probe fields in Ch1 and Ch2 are switched on.
As the phase of the input probe in Ch1 is slowly swept, we
record the output probe fields’ intensities in Ch1 and Ch2 sep-
arately, which, according to our theoretical derivations, should
be I1 ∝ cos�θ1 − θ2 − θ0� and I 2 ∝ cos�θ2 − θ1 − θ0�, respec-
tively. Here θ2 � ϕ�2�

p − ϕ�2�
c and ϕ�2�

p,c are the corresponding
phases of the probe and control fields in Ch2. Apparently,
the unsynchronized intensity output of the two channels orig-
inates from the phase interference of two processes: one is the
reading and writing of the ground-state coherence by the con-
trol and the probe fields, featuring direction-dependent phases
θ1 − θ2 and θ2 − θ1, respectively, and the other the direction-
independent phase θ0 from the light wall. This scheme is closely
related to a recent proposal on nonreciprocity [62]. As shown in
Fig. 4, the experimental observations agree well with theoretical
predictions. In the absence of the light wall [see Fig. 4(a)],
the two output probes change in a synchronized way; with
the addition of the light wall [see Fig. 4(b)], the output inten-
sities of the probes display a phase lag. It is worth noting that,
compared to the case in Fig. 3, now the phase lag is 2θ0. Under a
higher laser power, the phase lag approaches π, demonstrating a
fully out-of-phase behavior as shown in Fig. 4(c), which recovers
the property of a conventional beam splitter (BS) commonly
used in optical interferometry experiments. However, the re-
maining difference from the conventional Hermitian BS is that
the light-wall-induced “Hermitian” BS here suffers additional
loss, and is a manifestation of the Kramers–Kronig relation.
Namely, the change in the probe field’s phase (due to the
ground-state coherence’s phase change by the light wall) is asso-
ciated with the additional absorption in the probe field.

The configuration demonstrated here serves as a flexible
building block in implementing more complicated non-
Hermitian models for the study of exotic non-Hermitian
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Fig. 2. Characterization of the light wall. Illustration of typical EIT
spectra with (blue) and without (red) the light wall, obtained from
(a) experiment and (b) Monte-Carlo simulations. (c) Measured EIT
center shift versus laser power, with red detuning of 6 GHz.
(d) Measured EIT center shift versus laser detuning, with laser power
of 24 mW.
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Fig. 3. Measurement of the light-wall-induced phase shift in the
atomic spin wave. Light power output from the interference between
the control and probe fields in Ch1 and Ch2, respectively, with (a) light
wall turned off, (b) light-wall power of 6 mW, and (c) light-wall power
of 30 mW. The inferred phase shifts of the spin wave are 0, π∕4, and
π∕2 respectively. (d) Light-wall-induced spin wave phase shift versus
light-wall power. The light-wall laser is red-detuned by 6 GHz.

Research Article Vol. 10, No. 9 / September 2022 / Photonics Research 2093



criticality or topology. As a concrete example, we propose a
minimal setup that involves three optical channels A, B, and
C, and is readily accessible in an experiment using vacuum va-
por cells without wall-coating. In such cells, adjacent optical
channels couple through ballistic diffusion such that the
next-nearest-neighbor coupling can be neglected [63]. As illus-
trated in Fig. 5(a), we assume that, between channels A and B,
the phase factor in the coupling term g0 is 1, and the light-wall-
induced coherence’ phase shift is θ0; between channels B and
C, the phase factor in the coupling term g1 is −i, and the light-
wall-induced phase shift is θ1 � π∕2. Then, the effective non-
Hermitian Hamiltonian is

Ĥ � δâ†â� g0e
iθ0 b̂†â − g0e

iθ0 â†b̂� g1 ĉ
†b̂� g1b̂

† ĉ, (3)

where â, b̂, and ĉ are the annihilation operators for the probe
beams in channels A, B, and C, respectively; the coupling terms
g0 and g1 can be tuned by the distance between the channels as
well as the laser beam size, and the on-site energy shift δ can be
created through AC-Stark shift generated by an off-resonance
laser beam within channel A [48]. As shown in Fig. 5, the non-
Hermitian Hamiltonian [Eq. (3)] features highly tunable ex-
ceptional points, and offers an accessible minimal configuration
where intriguing non-Hermitian phenomena such as higher-
order exceptional point and exceptional-point encircling can be
systematically probed using atomic-vapor cells. Specifically, the
Hamiltonian has PT symmetry for θ0 � 0 and δ � 0, whereas
exceptional points are tunable through δ [see Fig. 5(c)]. The PT
symmetry is broken when θ0 deviates from 0 or δ ≠ 0 [see
Figs. 5(d)–5(f)], offering a sensitive control for the study of
non-Hermitian criticality at the exceptional points.

3. CONCLUSION

In conclusion, tunable non-Hermitian coupling between light
modes is demonstrated in an atomic ensemble with the assis-
tance of atomic motion and a light wall in the reservoir. The
atomic spin wave picks up an extra phase when travelling
through the light wall. The non-Hermiticity of the correspond-
ing Hamiltonian is controlled by adjusting laser parameters of
the light wall. While we confirm the tunability of the system
through light-transport measurements, our setup can be applied
as a building block for applications in quantum simulation of
non-Hermitian physics and nonreciprocal devices [62,64–68].
Compared to existing studies of tuning non-Hermiticity in op-
tical cavities and laser-array systems [69,70], our experiment is
based on atom-optic coupling, which enables future quantum
optical applications. In a recent experiment, the Hermiticity
of a magnon–photon beam splitter in cold atoms was tuned
by varying the laser detuning [61], while our method is suitable
for spatial splitting of light and potential large-scale spatialmulti-
plexing of quantum light sources [71].

4. METHODS

A. EIT Linewidth Measurement
In order to show that our experiment is in the regime of EIT,
not ATS, we have measured the EIT linewidth as a function of
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Fig. 4. Beam splitter with tunable non-Hermiticity. Transmitted
probe powers in Ch1 and Ch2, with input probes in both channels
turned on, with (a) absence of the light wall, (b) light-wall power of
6 mW, and (c) light-wall power of 24 mW, displaying a phase lag
between the two channels of about π∕2 and π for (b) and (c), respec-
tively. (d) Light-wall-induced phase lag versus light-wall power.
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(e) (f)

Fig. 5. (a) Schematic illustration of the proposed three-channel
model in Eq. (3). (b) Location of the exceptional point as a function
of δ for θ0 � 0. A third-order exceptional point only exists at δ � 0.
(c) Real (blue solid) and imaginary (red dashed) components of the
eigenspectrum of Eq. (3), with δ � 0 and θ0 � 0. A third-order ex-
ceptional point exists at g1∕g0 � 1. (d) Eigenspectrum with
δ∕g0 � 0.5 and θ0 � 0; a second-order exceptional point remains
at g1∕g0 � 1.73. (e) Eigenspectrum with δ � 0 and θ0 � 0.02π.
(f ) Eigenspectrum with δ∕g0 � 0.5 and θ0 � 0.02π.
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the laser power of the control field, in the range that covers our
experimental condition. As shown in Fig. 6, the linewidth has a
linear dependence on the laser power, and is less than 100 Hz,
much narrower than the excited-state linewidth (∼500 MHz
Doppler broadened). These features are in contrast to those
of ATS, whose linewidth is larger than the excited-state line-
width, and is proportional to the Rabi frequency (square root
of the laser power) of the control field.

B. Coupling Model
We establish a model to describe the inter-channel coupling.
We start from the full optical Bloch equations where the co-
herences and populations between any two atomic levels are
included; then we adiabatically eliminate the excited-state dy-
namics. We further make the approximation that the popula-
tions of states j1i and j2i are 0 and 1, respectively, because the
population of the excited state is nearly zero (since the control
field’s Rabi frequency is much smaller than the excited state’s
Doppler-broadened linewidth), and the control field is much
stronger than the probe field.

As the optical coherence has a short lifetime of about 20 ns,
we only consider the coupling between the ground-state coher-
ences ρ�1�12 (ρ�2�12 ) for channel 1 (2). The coupling equation takes
the form

8<
:

_ρ�1�12 � −γ 012ρ
�1�
12 � Γcρ

�2�
12 −

Ω�1��
c Ω�1�

p

γ23
,

_ρ�2�12 � −γ 012ρ
�2�
12 � Γcρ

�1�
12 −

Ω�2��
c Ω�2�

p

γ23
:

(4)

Here, γ 012 � γ12 � Γc � Γ�1�
p � Γ�2�

p represents the total ef-

fective decay rate in each channel, with Γ�i�
p � jΩ�i�

c j2
γ23

, i � 1, 2
the optical pumping rate.

By setting _ρ�1�12 � _ρ�2�12 � 0, the steady-state solutions for the
ground-state coherence are

8>>><
>>>:

ρ�1�12 � −
Ω�1��c Ω�1�p

γ23
γ 012−

Ω�2��c Ω�2�p
γ23

Γc

γ 0212−Γ
2
c

,

ρ�2�12 � −
Ω�2��c Ω�2�p

γ23
γ 012−

Ω�1��c Ω�1�p
γ23

Γc

γ 0212−Γ
2
c

:

(5)

In an optical thin system, optical coherence ρ�i�32 �
iΩ�i�

c ρ�i�12�iΩ�i�
p ρ�i�22

γ23
, ρ�i�22 ≈ 1, i � 1, 2. According to the light propa-

gating equation dE �i�
dz � ik̄

2 χ
�i�E �i� � N

V
ik̄
2

μ0ρ
�i�
32

ϵ0
, we obtain the

coupling equation of the probe fields8>>><
>>>:

dE �1�
dt � Nck̄μ20

2ℏV ϵ0γ23

�
−E �1�γ 0 � E �2� Γc

γ23
Ω�1�

c Ω�2��
c

γ 0212−Γ
2
c

�
,

dE �2�
dt � Nck̄μ20

2ℏV ϵ0γ23
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−E �2�γ 0 � E �1� Γc

γ23
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c Ω�1��
c

γ 0212−Γ
2
c

�
,

(6)

where γ 0 � 1 −
jΩ�i�

c j2γ 012
γ23�γ 0212−Γ2

c �,
N
V is the density of atoms, c is the

speed of light in vacuum, k̄ is the average wave vector, μ0 is
the dipole moment, and ϵ0 is the vacuum dielectric constant.
In the presence of the light wall, an atomic spin wave trans-
ported to the other channel induces an extra phase θ0.
Thus, Γc is replaced by Γc eiθ0. Taking the coupling term into
consideration, we have our beam-splitter Hamiltonian

Ĥ � ℏ�gâ1â†2 − g�â†2â1�eiθ0 , (7)

where g � −i N ck̄μ20Γc

2ℏV ϵ0γ
2
23

Ω�2��
c Ω�1�

c
γ 0212−Γ

2
c

is the complex coupling coeffi-

cient between the two probe fields. Here â1 (â2) is the anni-
hilation operator for the probe field in Ch1 (Ch2).

To further understand the transport experiments, we

assume jΩ�1�
c j � jΩ�2�

c j, and define γ 0 0 � Nck̄μ20
2ℏV ϵ0γ23

⋅�
1 −

jΩ�i�
c j2γ 012

γ23�γ 0212−Γ2
c �

�
and Γ 0 0

c � Nck̄μ20
2ℏV ϵ0γ23

Γc
γ23

Ω�1�
c Ω�2��

c
γ 0212−Γ

2
c
. The coupling

equations then become�
dE �1�
dt � −γ 0 0E �1� � Γ 0 0

c eiθ0E �2�,
dE �2�
dt � −γ 0 0E �2� � Γ 0 0�

c eiθ0E �1�.
(8)

For the first scheme where only the probe field in Ch1
is switched on, we have (following a time-dependent
perturbation) (

E �1�
p,out �

�
1 − γ 0 0L

c

�
E �1�
p,in�t�,

E �2�
p,out � Γ 0 0�

c eiθ0L
c E �1�

p,in�t�,
(9)

where L is the length of vapor cell. It follows that the detected
intensities 8<

:
I 1�t� �

����1 − γ 0 0L
c

�
E �1�
p,in�t� � E �1�

c

���2,
I 2�t� �

��� Γ 0 0�
c eiθ0L

c E �1�
p,in�t� � E �2�

c

���2: (10)

Since Γ 0 0
c � jΓ 0 0

c jei�ϕ
�1�
c −ϕ�2�

c �, we have I1�t� ∝ j1�
β1ei�ϕ

�1�
p �t�−ϕ�1�

c �j2 and I2�t� ∝ j1� β2ei�ϕ
�1�
p �t�−ϕ�1�

c �θ0 �j2. Here
constants β1,2 are related to parameters of the system, and
ϕ1
c,p are the phases of the control and probe fields of Ch1.
For the second scheme where both probe fields are turned

on, we only detect the probe fields in each channel’s output,

40 50 60 70 80 90 100
20

25

30

35

40

Laser Power [µW]

Fu
ll 

W
id

th
 o

f 
E

IT
 [

H
z]

Fig. 6. Measured EIT linewidth versus laser power of the control
field. The line is a linear fit to guide the eye.
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with8<
:

E �1�
p,out �

�
1 − γ 0 0L

c

�
E �1�
p,in�t� � Γ 0 0

c eiθ0L
c E �2�

p,in,

E �2�
p,out �

�
1 − γ 0 0L

c

�
E �2�
p,in�t� � Γ 0 0�

c eiθ0L
c E �1�

p,in�t�:
(11)

The detected intensities are then�
I 1�t� ∝ j1� β 0ei�ϕ

�1�
p �t�−ϕ�1�

c �ϕ�2�
c −ϕ�2�

p −θ0 �j2,
I 2�t� ∝ j1� β 0ei�ϕ

�1�
p �t�−ϕ�1�

c �ϕ�2�
c −ϕ�2�

p �θ0 �j2:
(12)

Here the constant β 0 is related to parameters of the system,
and ϕ2

c,p are the phases of the control and probe fields of Ch2.

C. Phase Shift Saturation
As shown in Figs. 3(d) and 4(d), the phase shift caused by the
light wall is not proportional to the light-wall power but sat-
urates to a constant. However, the AC Stark shift caused by the
far-detuned light is proportional to the light power, resulting in
the linear relation between the EIT-center shift and the light-
wall power in Fig. 2(c). To understand the relation between the
phase shift and the light-wall power, we introduce an effective
interaction time between the flying atoms and the light wall.
The effective interaction time should correspond to the time it
takes for the system to reach the steady state (denoted as t steady),
and should be approximately inversely proportional to the EIT
full linewidth ωfull. Here the EIT linewidth ωfull � γ0 � γpl ,
where γ0 is the EIT width without the light wall, and γpl is
the linewidth broadening due to the light wall (as shown in
Fig. 1), proportional to the light wall’s laser power. It follows
that t steady � 1

γ0�α1P
. The phase picked up by the atomic spin

wave corresponds to the EIT center shift α2P (which is also
proportional to the light-wall power) times the effective inter-
action time. We then obtain θ0 � α2P

γ0�α1P
. When the light-wall

power P is small, θ0 ∝ P. As the power increases, θ0 saturates to
a constant.

In the experiment, we measure the EIT full linewidth and
EIT center shift as functions of the light-wall power. The
dependence of the phase shift on the light-wall power is similar
to that of the EIT center shift divided by the EIT full linewidth,
as shown in Fig. 7(a). To check these results theoretically, we
carry out a two-dimensional Monte Carlo simulation. The
model is similar to the one we developed in Ref. [48], but
now we add a far-detuned laser region. The simulation results
are shown in Fig. 7(b), which qualitatively agree with the ex-
periment trends.
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