• Laser & Optoelectronics Progress
  • Vol. 61, Issue 1, 0123002 (2024)
Ruiying Kong1、2, Yijun Wei1、2, Jiacheng Chen1、2, Tianshu Ma1、2, Yaohui Zhan1、2、*, and Xiaofeng Li1、2、**
Author Affiliations
  • 1School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, Jiangsu , China
  • 2Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Suzhou 215006, Jiangsu , China
  • show less
    DOI: 10.3788/LOP232375 Cite this Article Set citation alerts
    Ruiying Kong, Yijun Wei, Jiacheng Chen, Tianshu Ma, Yaohui Zhan, Xiaofeng Li. Efficient Photoelectric Coupling Simulation and Machine Learning Study of Perovskite Solar Cells (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0123002 Copy Citation Text show less
    References

    [1] Green M A, Bremner S P. Energy conversion approaches and materials for high-efficiency photovoltaics[J]. Nature Materials, 16, 23-34(2017).

    [2] Dunlap-Shohl W A, Zhou Y Y, Padture N P et al. Synthetic approaches for halide perovskite thin films[J]. Chemical Reviews, 119, 3193-3295(2019).

    [3] Wang H, Kim D H. Perovskite-based photodetectors: materials and devices[J]. Chemical Society Reviews, 46, 5204-5236(2017).

    [4] Zhou Y, Chen J, Bakr O M et al. Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications[J]. Chemistry of Materials, 30, 6589-6613(2018).

    [5] Li Y, Yang Y L, Chen L J et al. Research progress on electron transport layer of inverted perovskite solar cells[J]. Laser & Optoelectronics Progress, 60, 1500006(2023).

    [6] Lü J Q, Zhang N, Yin P et al. Research progress on optically designed solar photovoltaic concentrators[J]. Laser & Optoelectronics Progress, 56, 230002(2019).

    [7] An Y D, Sheng C X, Li X F. Radiative cooling of solar cells: opto-electro-thermal physics and modeling[J]. Nanoscale, 11, 17073-17083(2019).

    [8] Tao L P. Study on performance of organic heterojunction/perovskite composite photovoltaic devices[D](2023).

    [9] Wang Y Q. Design and performance study of ultra-thin perovskite solar cells[D](2023).

    [10] Polman A, Knight M, Garnett E C et al. Photovoltaic materials: present efficiencies and future challenges[J]. Science, 352, aad4424(2016).

    [11] Polman A, Atwater H A. Photonic design principles for ultrahigh-efficiency photovoltaics[J]. Nature Materials, 11, 174-177(2012).

    [12] Ren X G, Wang Z S, Sha W E I et al. Exploring the way to approach the efficiency limit of perovskite solar cells by drift-diffusion model[J]. ACS Photonics, 4, 934-942(2017).

    [13] Sha W E I, Ren X G, Chen L Z et al. The efficiency limit of CH3NH3PbI3 perovskite solar cells[J]. Applied Physics Letters, 106, 221104(2015).

    [14] An Y D, Wang C L, Cao G Y et al. Heterojunction perovskite solar cells: opto-electro-thermal physics, modeling, and experiment[J]. ACS Nano, 14, 5017-5026(2020).

    [15] Kossyvakis D N, Hristoforou E V, Falaras P et al. Optimum coupling of photovoltaic devices and Peltier coolers for improved performance and stability[J]. International Journal of Sustainable Energy, 41, 1667-1693(2022).

    [16] Kamarudin M A, Sahamir S R, Ripolles T S et al. Energy level alignment studies in tin perovskite solar cells through incorporation of inorganic cation and charge transport layer selection[J]. Organic Electronics, 113, 106712(2023).

    [17] Li Y, Lü Z Y, Gou T et al. Temperature-dependent optical properties and photovoltaic device design of Cs-doped FAPbBr3 thin films[J]. Acta Optica Sinica, 43, 2331004(2023).

    [18] Schmidt H J, Bröcker T. Maxwell equations with spin density[J]. European Journal of Physics, 44, 035201(2023).

    [19] Heinreichsberger O, Selberherr S, Stiftinger M et al. Fast iterative solution of carrier continuity equations for three-dimensional device simulation[J]. SIAM Journal on Scientific and Statistical Computing, 13, 289-306(1992).

    [20] Shang A X, An Y D, Ma D et al. Optoelectronic insights into the photovoltaic losses from photocurrent, voltage, and energy perspectives[J]. AIP Advances, 7, 085019(2017).

    [21] Gao Y L. Generalized finite difference method for Poisson equation based on arbitrary polygon mesh[J]. Journal of Xi’an University (Natural Science Edition), 26, 1-6(2023).

    [22] Liu Y Q. Poisson process and thermal performance simulation of lithium battery materials based on mathematical model[J]. Information Recording Materials, 24, 166-168, 172(2023).

    [23] Xu L J, Liu W Z, Liu H H et al. Heat generation and mitigation in silicon solar cells and modules[J]. Joule, 5, 631-645(2021).

    [24] Li X F, Hylton N P, Giannini V et al. Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells[J]. Optics Express, 19, A888-A896(2011).

    [25] Liu Y M, Yan W S, Han S C et al. How machine learning predicts and explains the performance of perovskite solar cells[J]. Solar RRL, 6, 2101100(2022).

    [26] Saidi W A, Shadid W, Castelli I E. Machine-learning structural and electronic properties of metal halide perovskites using a hierarchical convolutional neural network[J]. NPJ Computational Materials, 6, 36(2020).

    [27] Liu Y M, Yan W S, Zhu H et al. Study on bandgap predications of ABX3-type perovskites by machine learning[J]. Organic Electronics, 101, 106426(2022).

    [28] Hsu J W P, Xu W J. Accelerate process optimization in perovskite solar cell manufacturing with machine learning[J]. Matter, 5, 1334-1336(2022).

    [29] Li J X, Pradhan B, Gaur S et al. Predictions and strategies learned from machine learning to develop high-performing perovskite solar cells[J]. Advanced Energy Materials, 9, 1970181(2019).

    [30] Yan W S, Liu Y M, Zang Y et al. Machine learning enabled development of unexplored perovskite solar cells with high efficiency[J]. Nano Energy, 99, 107394(2022).

    [31] Shang A X, Li X F. Photovoltaic devices: opto-electro-thermal physics and modeling[J]. Advanced Materials, 29, 1603492(2017).

    [32] Li X F, Hylton N P, Giannini V et al. Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations[J]. Progress in Photovoltaics: Research and Applications, 21, 109-120(2013).

    [33] Chen Z X, Cai J, Zhang H B et al. Fiber nonlinear damage compensation based on multi-source domain transfer learning[J/OL]. Research on Optical Communication, 1-9. http://kns.cnki.net/kcms/detail/42.1266

    [34] Fu L L, Zhang Z Q, Xu H M et al. Research progress of optical functional glass based on machine learning[J/OL]. Laser & Optoelectronics Progress, 1-12. https://www.?opticsjournal.?net/Articles/L231278/EarlyPosting

    [35] Ma Q X, Li C, Li T Y et al. Quantitative analysis of binary and ternary mixtures based on terahertz spectroscopy and machine learning algorithm[J]. Laser & Optoelectronics Progress, 59, 1930003(2022).

    [36] Huang Q M, Chen Y K, Liu X Y et al. Fast Positioning of Brillouin Optical Time Domain Reflectometry Frequency Shift and Enhancement of Spatial Resolution Using Maximum-Seeking Method[J]. Acta Optica Sinica, 43, 1406004(2023).

    [37] Agiorgousis M L, Sun Y Y, Choe D H et al. Machine learning augmented discovery of chalcogenide double perovskites for photovoltaics[J]. Advanced Theory and Simulations, 3, 1800173(2020).

    [38] Wu D, Zhang H C, Liu H C et al. Revealing the hidden mechanism of enhanced responsivity of doped p-i-n perovskite photodiodes via coupled opto-electronic model[J]. Molecules, 27, 6223(2022).

    [39] Chen J L, Feng M J, Zha C Y et al. Machine learning-driven design of promising perovskites for photovoltaic applications: a review[J]. Surfaces and Interfaces, 35, 102470(2022).

    [40] Han Q, Liu H, Guo F Y et al. Research progress on Cs2AgBiBr6 halide double-perovskite solar cells[J]. Laser & Optoelectronics Progress, 60, 0700004(2023).

    [41] Luo J, Li X, Zhang X Y et al. Deep-learning-enabled inverse engineering of multi-wavelength invisibility-to-superscattering switching with phase-change materials[J]. Optics Express, 29, 10527-10537(2021).

    [42] An Y D, Shang A X, Cao G Y et al. Perovskite solar cells: optoelectronic simulation and optimization[J]. Solar RRL, 2, 1870227(2018).

    [43] Levtchenko A, Lachaume R, Michallon J et al. Coupling optical and electrical modelling for the study of a‐Si:H‐based nanowire array solar cells[J]. Physica Status Solidi(C), 14, 1700181(2017).

    [44] Shang A X. Study on optics and carrier dynamics of nanostructured photovoltaic devices[D](2018).

    [45] Zhang C, Cao G Y, Wu S L et al. Thermodynamic loss mechanisms and strategies for efficient hot-electron photoconversion[J]. Nano Energy, 55, 164-172(2019).

    [46] Wang C L, Zhao Y, Ma T S et al. A universal close-space annealing strategy towards high-quality perovskite absorbers enabling efficient all-perovskite tandem solar cells[J]. Nature Energy, 7, 744-753(2022).

    [47] Liang G Q, Zhang J. A machine learning model for screening thermodynamic stable lead-free halide double perovskites[J]. Computational Materials Science, 204, 111172(2022).

    [48] Krishna R V, Laxmi , Mahapatra B et al. Effect of electrical parameters on lead-based perovskite solar cell for high-efficiency performance[J]. Optical and Quantum Electronics, 54, 1-12(2022).

    Ruiying Kong, Yijun Wei, Jiacheng Chen, Tianshu Ma, Yaohui Zhan, Xiaofeng Li. Efficient Photoelectric Coupling Simulation and Machine Learning Study of Perovskite Solar Cells (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0123002
    Download Citation