• Journal of Semiconductors
  • Vol. 44, Issue 1, 012001 (2023)
Siwen Zhao1, Gonglei Shao2, Zheng Vitto Han3、4, Song Liu2、*, and Tongyao Zhang3、4、**
Author Affiliations
  • 1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110010, China
  • 2Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
  • 3State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
  • 4Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • show less
    DOI: 10.1088/1674-4926/44/1/012001 Cite this Article
    Siwen Zhao, Gonglei Shao, Zheng Vitto Han, Song Liu, Tongyao Zhang. Gate tunable spatial accumulation of valley-spin in chemical vapor deposition grown 40°-twisted bilayer WS2[J]. Journal of Semiconductors, 2023, 44(1): 012001 Copy Citation Text show less
    References

    [1] S W Zhao, X X Li, B J Dong et al. Valley manipulation in monolayer transition metal dichalcogenides and their hybrid systems: Status and challenges. Rep Prog Phys, 84, 026401(2021).

    [2] K F Mak, D Xiao, J Shan. Light–valley interactions in 2D semiconductors. Nat Photonics, 12, 451(2018).

    [3] K L Seyler, D Zhong, B Huang et al. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett, 18, 3823(2018).

    [4] A Ciarrocchi, D Unuchek, A Avsar et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat Photonics, 13, 131(2019).

    [5] L F Li, L Shao, X W Liu et al. Room-temperature valleytronic transistor. Nat Nanotechnol, 15, 743(2020).

    [6] J Lee, K F Mak, J Shan. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat Nanotechnol, 11, 421(2016).

    [7] Z F Wu, B T Zhou, X B Cai et al. Intrinsic valley Hall transport in atomically thin MoS2. Nat Commun, 10, 611(2019).

    [8] E Barré, J A C Incorvia, S H Kim et al. Spatial separation of carrier spin by the valley Hall effect in monolayer WSe2 transistors. Nano Lett, 19, 770(2019).

    [9] J Lee, Z F Wang, H C Xie et al. Valley magnetoelectricity in single-layer MoS2. Nat Mater, 16, 887(2017).

    [10] S A Vitale, D Nezich, J O Varghese et al. Valleytronics: Valleytronics: Opportunities, challenges, and paths forward (Small 38/2018). Small, 14, 1870172(2018).

    [11] X Z Chen, S Y Shi, G Y Shi et al. Observation of the antiferromagnetic spin Hall effect. Nat Mater, 20, 800(2021).

    [12] T Jungwirth, J Wunderlich, K Olejník. Spin Hall effect devices. Nat Mater, 11, 382(2012).

    [13] L Wang, E M Shih, A Ghiotto et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat Mater, 19, 861(2020).

    [14] E Li, J X Hu, X M Feng et al. Lattice reconstruction induced multiple ultra-flat bands in twisted bilayer WSe2. Nat Commun, 12, 5601(2021).

    [15] G Pacchioni. Valleytronics with a twist. Nat Rev Mater, 5, 480(2020).

    [16] G L Shao, X X Xue, X Liu et al. Twist angle-dependent optical responses in controllably grown WS2 vertical homojunctions. Chem Mater, 32, 9721(2020).

    [17] T Cao, G Wang, W P Han et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat Commun, 3, 887(2012).

    [18] T Y Zhang, S W Zhao, A R Wang et al. Electrically and magnetically tunable valley polarization in monolayer MoSe2 proximitized by a 2D ferromagnetic semiconductor. Adv Funct Mater, 32, 2204779(2022).

    [19] X T Li, Z D Liu, Y H Liu et al. All-electrical control and temperature dependence of the spin and valley Hall effect in monolayer WSe2 transistors. ACS Appl Electron Mater, 4, 3930(2022).

    [20] G Plechinger, P Nagler, J Kraus et al. Identification of excitons, trions and biexcitons in single-layer WS2. Phys Status Solidi RRL, 9, 457(2015).

    [21] Y Y Gong, V Carozo, H Y Li et al. High flex cycle testing of CVD monolayer WS2 TFTs on thin flexible polyimide. 2D Mater, 3, 021008(2016).

    [22] K Wu, H X Zhong, Q B Guo et al. Revealing the competition between defect-trapped exciton and band-edge exciton photoluminescence in monolayer hexagonal WS2. Adv Opt Mater, 10, 2101971(2022).

    [23] Z L Hu, J Avila, X Y Wang et al. The role of oxygen atoms on excitons at the edges of monolayer WS2. Nano Lett, 19, 4641(2019).

    [24] M S Kim, S J Yun, Y J Lee et al. Biexciton emission from edges and grain boundaries of triangular WS2 monolayers. ACS Nano, 10, 2399(2016).

    [25] P K Chow, R B Jacobs-Gedrim, J Gao et al. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. ACS Nano, 9, 1520(2015).

    Siwen Zhao, Gonglei Shao, Zheng Vitto Han, Song Liu, Tongyao Zhang. Gate tunable spatial accumulation of valley-spin in chemical vapor deposition grown 40°-twisted bilayer WS2[J]. Journal of Semiconductors, 2023, 44(1): 012001
    Download Citation