• Photonics Research
  • Vol. 8, Issue 4, 457 (2020)
Marco Passoni1, Dario Gerace1, Liam O’Faolain2、3, and Lucio Claudio Andreani1、4、*
Author Affiliations
  • 1Department of Physics, University of Pavia, 27100 Pavia, Italy
  • 2Centre for Advanced Photonics and Process Analysis, Cork Institute of Technology, Cork, Ireland
  • 3Tyndall National Institute, Cork, Ireland
  • 4Institute for Photonics and Nanotechnologies (IFN)-CNR, 20133 Milano, Italy
  • show less
    DOI: 10.1364/PRJ.382620 Cite this Article Set citation alerts
    Marco Passoni, Dario Gerace, Liam O’Faolain, Lucio Claudio Andreani. Optimizing an interleaved p-n junction to reduce energy dissipation in silicon slow-light modulators[J]. Photonics Research, 2020, 8(4): 457 Copy Citation Text show less
    References

    [1] D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, M. Nedeljkovic. Roadmap on silicon photonics. J. Opt., 18, 073003(2016).

    [2] Z. Zhou, R. Chen, X. Li, T. Li. Development trends in silicon photonics for data centers. Opt. Fiber Technol., 44, 13-23(2018).

    [3] C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, I. Tomkos. Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications. Commun. Surveys Tuts., 20, 2758-2783(2018).

    [4] G. T. Reed, G. Mashanovich, F. Y. Gardes, D. Thomson. Silicon optical modulators. Nat. Photonics, 4, 518-526(2010).

    [5] G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Yu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, S. S. Hsu. Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics, 3, 229-245(2014).

    [6] R. Soref, B. Bennett. Electrooptical effects in silicon. IEEE J. Quantum Electron., 23, 123-129(1987).

    [7] D. Miller. Energy consumption in optical modulators for interconnects. Opt. Express, 20, A293-A308(2012).

    [8] L. Chrostowski, M. Hochberg. Silicon Photonics Design: From Devices to Systems(2015).

    [9] E. Temporiti, A. Ghilioni, G. Minoia, P. Orlandi, M. Repossi, D. Baldi, F. Svelto. Insights into silicon photonics Mach-Zehnder-based optical transmitter architectures. IEEE J. Solid-State Circuits, 51, 3178-3191(2016).

    [10] A. Brimont, D. J. Thomson, F. Y. Gardes, J. M. Fedeli, G. T. Reed, J. Martí, P. Sanchis. High-contrast 40  Gb/s operation of a 500  μm long silicon carrier-depletion slow wave modulator. Opt. Lett., 37, 3504-3506(2012).

    [11] A. Brimont, A. M. Gutierrez, M. Aamer, D. J. Thomson, F. Y. Gardes, J. Fedeli, G. T. Reed, J. Marti, P. Sanchis. Slow-light-enhanced silicon optical modulators under low-drive-voltage operation. IEEE Photon. J., 4, 1306-1315(2012).

    [12] R. Hosseini, L. Mirzoyan, K. Jamshidi. Energy consumption enhancement of reverse-biased silicon-based Mach-Zehnder modulators using corrugated slow light waveguides. IEEE Photon. J., 10, 8200207(2018).

    [13] A. Zanzi, A. Rosa, A. Oriol, P. Sanchis, J. Marti, A. Brimont. Advanced high speed slow-light silicon modulators in the O-band for low power optical interconnects in data centers. 14th International Conference on Group IV Photonics, 149-150(2017).

    [14] R. Hosseini, A. Khachaturian, M. Cătuneanu, P. P. Khial, R. Fatemi, A. Hajimiri, K. Jamshidi. Compact, high extinction ratio silicon Mach-Zehnder modulator with corrugated waveguides. Conference on Lasers and Electro-Optics, SM3B.6(2018).

    [15] Y. Hinakura, H. Arai, T. Baba. 64  Gbps Si photonic crystal slow light modulator by electro-optic phase matching. Opt. Express, 27, 14321-14327(2019).

    [16] M. Povinelli, S. G. Johnson, J. Joannopoulos. Slow-light, band-edge waveguides for tunable time delays. Opt. Express, 13, 7145-7159(2005).

    [17] S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, T. Usuki. Compact pin-diode-based silicon modulator using side-wall-grating waveguide. IEEE J. Sel. Top. Quantum Electron., 19, 74-84(2013).

    [18] C. Sciancalepore, K. Hassan, T. Ferrotti, J. Harduin, H. Duprez, S. Menezo, B. B. Bakir. Low-loss adiabatically-tapered high-contrast gratings for slow-wave modulators on SOI. Proc. SPIE, 9372, 93720G(2015).

    [19] M. Passoni, D. Gerace, L. O’Faolain, L. C. Andreani. Optimizing band-edge slow light in silicon-on-insulator waveguide gratings. Opt. Express, 26, 8470-8478(2018).

    [20] A. Y. Petrov, M. Eich. Zero dispersion at small group velocities in photonic crystal waveguides. Appl. Phys. Lett., 85, 4866-4868(2004).

    [21] T. F. Krauss. Why do we need slow light?. Nat. Photonics, 2, 448-450(2008).

    [22] T. Baba. Slow light in photonic crystals. Nat. Photonics, 2, 465-473(2008).

    [23] J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, T. F. Krauss. Systematic design of flat band slow light in photonic crystal waveguides. Opt. Express, 16, 6227-6232(2008).

    [24] L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, T. F. Krauss. Loss engineered slow light waveguides. Opt. Express, 18, 27627-27638(2010).

    [25] S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss. Dispersion engineered slow light in photonic crystals: a comparison. J. Opt., 12, 104004(2010).

    [26] R. Hao, E. Cassan, X. L. Roux, D. Gao, V. D. Khanh, L. Vivien, D. Marris-Morini, X. Zhang. Improvement of delay-bandwidth product in photonic crystal slow-light waveguides. Opt. Express, 18, 16309-16319(2010).

    [27] A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, L. Kuipers. Ultracompact (3  μm) silicon slow-light optical modulator. Sci. Rep., 3, 3546(2013).

    [28] T. Baba, H. C. Nguyen, N. Yazawa, Y. Terada, S. Hashimoto, T. Watanabe. Slow-light Mach-Zehnder modulators based on Si photonic crystals. Sci. Technol. Adv. Mater., 15, 024602(2014).

    [29] T. Tamura, K. Kondo, Y. Terada, Y. Hinakura, N. Ishikura, T. Baba. Silica-clad silicon photonic crystal waveguides for wideband dispersion-free slow light. J. Lightwave Technol., 33, 3034-3040(2015).

    [30] Z.-Y. Li, D.-X. Xu, W. R. McKinnon, S. Janz, J. H. Schmid, P. Cheben, J.-Z. Yu. Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions. Opt. Express, 17, 15947-15958(2009).

    [31] H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, J. Yu. High speed silicon Mach-Zehnder modulator based on interleaved PN junctions. Opt. Express, 20, 15093-15099(2012).

    [32] H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, W. Bogaerts. Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators. Opt. Express, 20, 12926-12938(2012).

    [33] D. Marris-Morini, C. Baudot, J.-M. Fédéli, G. Rasigade, N. Vulliet, A. Souhaité, M. Ziebell, P. Rivallin, S. Olivier, P. Crozat, X. L. Roux, D. Bouville, S. Menezo, F. Boeuf, L. Vivien. Low loss 40  Gbit/s silicon modulator based on interleaved junctions and fabricated on 300  mm SOI wafers. Opt. Express, 21, 22471-22475(2013).

    [34] D. Pérez-Galacho, D. Marris-Morini, R. Stoffer, E. Cassan, C. Baudot, T. Korthorst, F. Boeuf, L. Vivien. Simplified modeling and optimization of silicon modulators based on free-carrier plasma dispersion effect. Opt. Express, 24, 26332-26337(2016).

    [35] D. Perez-Galacho, C. Baudot, T. Hirtzlin, S. Messaoudène, N. Vulliet, P. Crozat, F. Boeuf, L. Vivien, D. Marris-Morini. Low voltage 25  Gbps silicon Mach-Zehnder modulator in the O-band. Opt. Express, 25, 11217-11222(2017).

    [36] X. Li, F. Yang, F. Zhong, Q. Deng, J. Michel, Z. Zhou. Single-drive high-speed lumped depletion-type modulators toward 10  fJ/bit energy consumption. Photon. Res., 5, 134-142(2017).

    [37] Y. Terada, H. Ito, H. Nguyen, T. Baba. Theoretical and experimental investigation of low-voltage and low-loss 25-Gbps Si photonic crystal slow light Mach-Zehnder modulators with interleaved p/n junction. Front. Phys., 2, 61(2014).

    [38] Y. Hinakura, Y. Terada, T. Tamura, T. Baba. Wide spectral characteristics of Si photonic crystal Mach-Zehnder modulator fabricated by complementary metal-oxide-semiconductor process. Photonics, 3, 17(2016).

    [39] K. Hojo, Y. Terada, N. Yazawa, T. Watanabe, T. Baba. Compact QPSK and PAM modulators with Si photonic crystal slow-light phase shifters. IEEE Photon. Technol. Lett., 28, 1438-1441(2016).

    [40] Y. Terada, T. Tatebe, Y. Hinakura, T. Baba. Si photonic crystal slow-light modulators with periodic p-n junctions. J. Lightwave Technol., 35, 1684-1692(2017).

    [41] Y. Terada, K. Kondo, R. Abe, T. Baba. Full C-band Si photonic crystal waveguide modulator. Opt. Lett., 42, 5110-5112(2017).

    [42] A. Al-Saadi, H. J. Eichler, S. Meister. High speed silicon electro-optic modulator with p-i-n comb diode. Opt. Quantum Electron., 44, 125-131(2012).

    [43] S. Meister, H. Rhee, A. Al-Saadi, B. A. Franke, S. Kupijai, C. Theiss, L. Zimmermann, B. Tillack, H. H. Richter, H. Tian, D. Stolarek, T. Schneider, U. Woggon, H. J. Eichler. Matching p-i-n-junctions and optical modes enables fast and ultra-small silicon modulators. Opt. Express, 21, 16210-16221(2013).

    [44] S. Kupijai, H. Rhee, A. Al-Saadi, M. Henniges, D. Bronzi, D. Selicke, C. Theiss, S. Otte, H. J. Eichler, U. Woggon, D. Stolarek, H. H. Richter, L. Zimmermann, B. Tillack, S. Meister. 25  Gb/s silicon photonics interconnect using a transmitter based on a node-matched-diode modulator. J. Lightwave Technol., 34, 2920-2923(2016).

    [45] M. Passoni, D. Gerace, L. O’Faolain, L. C. Andreani. Slow light with interleaved p-n junction to enhance performance of integrated Mach-Zehnder silicon modulators. Nanophotonics, 8, 1485-1494(2019).

    [46] F. Boeuf, S. Crémer, E. Temporiti, M. Ferè, M. Shaw, C. Baudot, N. Vulliet, T. Pinguet, A. Mekis, G. Masini, H. Petiton, P. Le Maitre, M. Traldi, L. Maggi. Silicon photonics R&D and manufacturing on 300-mm wafer platform. J. Lightwave Technol., 34, 286-295(2016).

    [47] M. Pantouvaki, S. A. Srinivasan, Y. Ban, P. De Heyn, P. Verheyen, G. Lepage, H. Chen, J. De Coster, N. Golshani, S. Balakrishnan, P. Absil, J. Van Campenhout. Active components for 50  Gb/s NRZ-OOK optical interconnects in a silicon photonics platform. J. Lightwave Technol., 35, 631-638(2017).

    [48] C. Bao, J. Hou, H. Wu, E. Cassan, L. Chen, D. Gao, X. Zhang. Flat band slow light with high coupling efficiency in one-dimensional grating waveguides. IEEE Photon. Technol. Lett., 24, 7-9(2012).

    [49] P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, M.-J. Picard. Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency. Opt. Express, 23, 22553-22563(2015).

    [50] J. Hugonin, P. Lalanne, I. D. Villar, I. Matias. Fourier modal methods for modeling optical dielectric waveguides. Opt. Quantum Electron., 37, 107-119(2005).

    [51] W. Shi, Y. Xu, H. Sepehrian, S. LaRochelle, L. A. Rusch. Silicon photonic modulators for PAM transmissions. J. Opt., 20, 083002(2018).

    [52] S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, Y. Fink. Perturbation theory for Maxwell’s equations with shifting material boundaries. Phys. Rev. E, 65, 066611(2002).

    [53] D. Gill, C. Xiong, J. Rosenberg, P. Pepeljugoski, J. Orcutt, W. Green. Modulator figure of merit for short reach data links. Opt. Express, 25, 24326-24339(2017).

    [54] P. Jean, A. Gervais, S. LaRochelle, W. Shi. Slow light in subwavelength grating waveguides. IEEE J. Sel. Top. Quantum Electron., 26, 8200108(2020).

    [55] S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, P. Absil. 193 nm immersion lithography for high-performance silicon photonic circuits. Proc. SPIE, 9052, 90520F(2014).

    [56] K. Ashida, M. Okano, T. Yasuda, M. Ohtsuka, M. Seki, N. Yokoyama, K. Koshino, K. Yamada, Y. Takahashi. Photonic crystal nanocavities with an average Q factor of 1.9 million fabricated on a 300-mm-wide SOI wafer using a CMOS-compatible process. J. Lightwave Technol., 36, 4774-4782(2018).

    Marco Passoni, Dario Gerace, Liam O’Faolain, Lucio Claudio Andreani. Optimizing an interleaved p-n junction to reduce energy dissipation in silicon slow-light modulators[J]. Photonics Research, 2020, 8(4): 457
    Download Citation