• Laser & Optoelectronics Progress
  • Vol. 56, Issue 11, 110003 (2019)
Lin Han1、*, Yige Lin2, Jing Yang1, Yingjie Lan1, Ye Li2, Xiaojun Wang1, Yong Bo1, and Qinjun Peng1
Author Affiliations
  • 1 Research Center of Laser Physics and Technology, Key Laboratory of Functional Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • 2 Time and Frequency Division, National Institute of Metrology, Beijing 100029, China
  • show less
    DOI: 10.3788/LOP56.110003 Cite this Article Set citation alerts
    Lin Han, Yige Lin, Jing Yang, Yingjie Lan, Ye Li, Xiaojun Wang, Yong Bo, Qinjun Peng. Research and Development on Laser Frequency Stabilization Based on Spectral Hole-Burning Effect[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110003 Copy Citation Text show less
    References

    [1] Pollnau M, Bernhardi E H, Worhoff K et al. Dual-wavelength narrow-linewidth lasers and their applications. [C]∥Advanced Solid State Lasers, October 27 - November 01, 2013, Paris. Washington D. C.: Optical Society of America, ATu1A, 6(2013).

         Pollnau M, Bernhardi E H, Worhoff K et al. Dual-wavelength narrow-linewidth lasers and their applications. [C]∥Advanced Solid State Lasers, October 27 - November 01, 2013, Paris. Washington D. C.: Optical Society of America, ATu1A, 6(2013).

    [2] Becker A, Sichkovskyi V, Rippien A et al. InP-based narrow-linewidth widely tunable quantum dot laser device for high-capacity coherent optical communication. [C]∥Photonic Networks; 18. ITG-Symposium, May 11-12, 2017, Leipzig, Germany. New York: IEEE, 18, 134-136(2017).

         Becker A, Sichkovskyi V, Rippien A et al. InP-based narrow-linewidth widely tunable quantum dot laser device for high-capacity coherent optical communication. [C]∥Photonic Networks; 18. ITG-Symposium, May 11-12, 2017, Leipzig, Germany. New York: IEEE, 18, 134-136(2017).

    [3] Bernhardi E H, de Ridder R M, Wörhoff K et al. . Rare-earth-ion-doped ultra-narrow-linewidth lasers on a silicon chip and applications to intra-laser-cavity optical sensing[J]. Proceedings of SPIE, 8599, 859909(2013). http://spie.org/x648.xml?product_id=2012520

         Bernhardi E H, de Ridder R M, Wörhoff K et al. . Rare-earth-ion-doped ultra-narrow-linewidth lasers on a silicon chip and applications to intra-laser-cavity optical sensing[J]. Proceedings of SPIE, 8599, 859909(2013). http://spie.org/x648.xml?product_id=2012520

    [4] Chen H Q, Jiang Y Y, Bi Z Y et al. Progress and trend of narrow-linewidth lasers[J]. Science China Technological Sciences, 56, 1589-1596(2013). http://www.cnki.com.cn/Article/CJFDTotal-JEXG201307002.htm

         Chen H Q, Jiang Y Y, Bi Z Y et al. Progress and trend of narrow-linewidth lasers[J]. Science China Technological Sciences, 56, 1589-1596(2013). http://www.cnki.com.cn/Article/CJFDTotal-JEXG201307002.htm

    [5] Shen H, Li L F, Chen L S. Lasers with ultra-narrow linewidth: theories and applications of laser frequency stabilization[J]. Physics, 45, 441-448(2016).

         Shen H, Li L F, Chen L S. Lasers with ultra-narrow linewidth: theories and applications of laser frequency stabilization[J]. Physics, 45, 441-448(2016).

    [6] Cao J, Zhang P, Shang J et al. A compact, transportable single-ion optical clock with 7.8×10 -17 systematic uncertainty [J]. Applied Physics B, 123, 112(2017). http://link.springer.com/10.1007/s00340-017-6671-5

         Cao J, Zhang P, Shang J et al. A compact, transportable single-ion optical clock with 7.8×10 -17 systematic uncertainty [J]. Applied Physics B, 123, 112(2017). http://link.springer.com/10.1007/s00340-017-6671-5

    [7] Ludlow A D, Boyd M M, Ye J et al. Optical atomic clocks[J]. Reviews of Modern Physics, 87, 637-701(2015).

         Ludlow A D, Boyd M M, Ye J et al. Optical atomic clocks[J]. Reviews of Modern Physics, 87, 637-701(2015).

    [8] Ludlow A D, Huang X, Notcutt M et al. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10 -15[J]. Optics Letters, 32, 641-643(2007). http://europepmc.org/abstract/MED/17308587

         Ludlow A D, Huang X, Notcutt M et al. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10 -15[J]. Optics Letters, 32, 641-643(2007). http://europepmc.org/abstract/MED/17308587

    [9] Kessler T, Hagemann C, Grebing C et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 6, 687-692(2012). http://www.nature.com/nphoton/journal/v6/n10/abs/nphoton.2012.217.html

         Kessler T, Hagemann C, Grebing C et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 6, 687-692(2012). http://www.nature.com/nphoton/journal/v6/n10/abs/nphoton.2012.217.html

    [10] Weng W L, Anstie J D, Stace T M et al. Nano-Kelvin thermometry and temperature control:beyond the thermal noise limit[J]. Physical Review Letters, 112, 160801(2014). http://www.ncbi.nlm.nih.gov/pubmed/24815630

         Weng W L, Anstie J D, Stace T M et al. Nano-Kelvin thermometry and temperature control:beyond the thermal noise limit[J]. Physical Review Letters, 112, 160801(2014). http://www.ncbi.nlm.nih.gov/pubmed/24815630

    [11] Notcutt M, Ma L S, Ludlow A D et al. Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers[J]. Physical Review A, 73, 031804(2006). http://adsabs.harvard.edu/abs/2006PhRvA..73c1804N

         Notcutt M, Ma L S, Ludlow A D et al. Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers[J]. Physical Review A, 73, 031804(2006). http://adsabs.harvard.edu/abs/2006PhRvA..73c1804N

    [12] Häfner S, Falke S, Grebing C et al. 8×10 -17 fractional laser frequency instability with a long room-temperature cavity [J]. Optics Letters, 40, 2112-2115(2015). http://www.ncbi.nlm.nih.gov/pubmed/25927798

         Häfner S, Falke S, Grebing C et al. 8×10 -17 fractional laser frequency instability with a long room-temperature cavity [J]. Optics Letters, 40, 2112-2115(2015). http://www.ncbi.nlm.nih.gov/pubmed/25927798

    [13] Cone R L, Thiel C W, Sun Y C et al. Quantum information, laser frequency stabilization, and optical signal processing with rare-earth doped materials. [C]∥Laser Science, October 6-10, 2013, Orlando, Florida United States. Washington D. C.: Optical Society of America, LTu1G, 3(2013).

         Cone R L, Thiel C W, Sun Y C et al. Quantum information, laser frequency stabilization, and optical signal processing with rare-earth doped materials. [C]∥Laser Science, October 6-10, 2013, Orlando, Florida United States. Washington D. C.: Optical Society of America, LTu1G, 3(2013).

    [14] Michael J T, Lars R, Tara M F et al. Frequency-stabilization to 6×10 -16 via spectral-hole burning [J]. Nature Photonics, 5, 688-673(2011).

         Michael J T, Lars R, Tara M F et al. Frequency-stabilization to 6×10 -16 via spectral-hole burning [J]. Nature Photonics, 5, 688-673(2011).

    [15] Thorpe M J, Leibrandt D R, Rosenband T. Shifts of optical frequency references based on spectral-hole burning in Eu 3+∶Y2SiO5[J]. New Journal of Physics, 15, 033006(2013).

         Thorpe M J, Leibrandt D R, Rosenband T. Shifts of optical frequency references based on spectral-hole burning in Eu 3+∶Y2SiO5[J]. New Journal of Physics, 15, 033006(2013).

    [16] Leibrandt D R, Thorpe M J, Notcutt M et al. Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments[J]. Optics Express, 19, 3471-3482(2011). http://www.ncbi.nlm.nih.gov/pubmed/21369170

         Leibrandt D R, Thorpe M J, Notcutt M et al. Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments[J]. Optics Express, 19, 3471-3482(2011). http://www.ncbi.nlm.nih.gov/pubmed/21369170

    [17] Julsgaard B, Walther A, Kröll S et al. Understanding laser stabilization using spectral hole burning[J]. Optics Express, 15, 11444-11465(2007). http://www.opticsinfobase.org/abstract.cfm?uri=oe-15-18-11444

         Julsgaard B, Walther A, Kröll S et al. Understanding laser stabilization using spectral hole burning[J]. Optics Express, 15, 11444-11465(2007). http://www.opticsinfobase.org/abstract.cfm?uri=oe-15-18-11444

    [18] Rippe L, Julsgaard B, Walther A et al. -11-05)[2018-11-05]. https:∥arxiv.org/abs/quant-ph/0611056.(2006).

         Rippe L, Julsgaard B, Walther A et al. -11-05)[2018-11-05]. https:∥arxiv.org/abs/quant-ph/0611056.(2006).

    [19] Sellin P B, Strickland N M, Carlsten J L et al. Programmable frequency reference for subkilohertz laser stabilization by use of persistent spectral hole burning[J]. Optics Letters, 24, 1038-1040(1999). http://www.ncbi.nlm.nih.gov/pubmed/18073933

         Sellin P B, Strickland N M, Carlsten J L et al. Programmable frequency reference for subkilohertz laser stabilization by use of persistent spectral hole burning[J]. Optics Letters, 24, 1038-1040(1999). http://www.ncbi.nlm.nih.gov/pubmed/18073933

    [20] Strickland N M, Sellin P B, Sun Y et al. Laser frequency stabilization using regenerative spectral hole burning[J]. Physical Review B, 62, 1473-1476(2000). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000062000003001473000001&idtype=cvips&gifs=Yes

         Strickland N M, Sellin P B, Sun Y et al. Laser frequency stabilization using regenerative spectral hole burning[J]. Physical Review B, 62, 1473-1476(2000). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000062000003001473000001&idtype=cvips&gifs=Yes

    [21] Böttger T, Pryde G J, Strickland N M et al. Semiconductor lasers stabilized to spectral holes in rare-earth crystals[J]. Optics and Photonics News, 12, 23(2001). http://www.opticsinfobase.org/abstract.cfm?uri=opn-12-12-23

         Böttger T, Pryde G J, Strickland N M et al. Semiconductor lasers stabilized to spectral holes in rare-earth crystals[J]. Optics and Photonics News, 12, 23(2001). http://www.opticsinfobase.org/abstract.cfm?uri=opn-12-12-23

    [22] Sellin P B, Strickland N M, Böttger T et al. Laser stabilization at 1536 nm using regenerative spectral hole burning[J]. Physical Review B, 63, 155111(2001). http://adsabs.harvard.edu/abs/2001PhRvB..63o5111S

         Sellin P B, Strickland N M, Böttger T et al. Laser stabilization at 1536 nm using regenerative spectral hole burning[J]. Physical Review B, 63, 155111(2001). http://adsabs.harvard.edu/abs/2001PhRvB..63o5111S

    [23] Böttger T, Sun Y, Pryde G J et al. nm[J]. Journal of Luminescence, 2001, 94/95, 565-568(1536).

         Böttger T, Sun Y, Pryde G J et al. nm[J]. Journal of Luminescence, 2001, 94/95, 565-568(1536).

    [24] Pryde G J, Böttger T, Cone R L et al. Semiconductor lasers stabilized to spectral holes in rare earth crystals to a part in 1013 and their application to devices and spectroscopy[J]. Journal of Luminescence, 98, 309-315(2002). http://www.sciencedirect.com/science/article/pii/S0022231302002855

         Pryde G J, Böttger T, Cone R L et al. Semiconductor lasers stabilized to spectral holes in rare earth crystals to a part in 1013 and their application to devices and spectroscopy[J]. Journal of Luminescence, 98, 309-315(2002). http://www.sciencedirect.com/science/article/pii/S0022231302002855

    [25] Böttger T, Pryde G J, Cone R L. Programmable laser frequency stabilization at 1523 nm by use of persistent spectral hole burning[J]. Optics Letters, 28, 200-202(2003). http://www.opticsinfobase.org/ol/abstract.cfm?id=71104

         Böttger T, Pryde G J, Cone R L. Programmable laser frequency stabilization at 1523 nm by use of persistent spectral hole burning[J]. Optics Letters, 28, 200-202(2003). http://www.opticsinfobase.org/ol/abstract.cfm?id=71104

    [26] Böttger T, Pryde G J, Thiel C W et al. Laser frequency stabilization at 1.5 microns using ultranarrow inhomogeneous absorption profiles in Er 3+: LiYF4[J]. Journal of Luminescence, 127, 83-88(2007). http://www.sciencedirect.com/science/article/pii/S0022231307000579

         Böttger T, Pryde G J, Thiel C W et al. Laser frequency stabilization at 1.5 microns using ultranarrow inhomogeneous absorption profiles in Er 3+: LiYF4[J]. Journal of Luminescence, 127, 83-88(2007). http://www.sciencedirect.com/science/article/pii/S0022231307000579

    [27] Chen Q F, Troshyn A, Ernsting I et al. Spectrally narrow, long-term stable optical frequency reference based on a Eu 3+∶Y2SiO5 crystal at cryogenic temperature [J]. Physical Review Letters, 107, 223202(2011). http://www.ncbi.nlm.nih.gov/pubmed/22182027

         Chen Q F, Troshyn A, Ernsting I et al. Spectrally narrow, long-term stable optical frequency reference based on a Eu 3+∶Y2SiO5 crystal at cryogenic temperature [J]. Physical Review Letters, 107, 223202(2011). http://www.ncbi.nlm.nih.gov/pubmed/22182027

    [28] Leibrandt D R, Thorpe M J, Chou C W et al. Absolute and relative stability of an optical frequency reference based on spectral hole burning in Eu 3+: Y2SiO5[J]. Physical Review Letters, 111, 237402(2013). http://europepmc.org/abstract/MED/24476301

         Leibrandt D R, Thorpe M J, Chou C W et al. Absolute and relative stability of an optical frequency reference based on spectral hole burning in Eu 3+: Y2SiO5[J]. Physical Review Letters, 111, 237402(2013). http://europepmc.org/abstract/MED/24476301

    [29] Sabooni M, Li Q, Rippe L et al. Spectral engineering of slow light, cavity line narrowing, and pulse compression[J]. Physical Review Letters, 111, 183602(2013). http://europepmc.org/abstract/med/24237519

         Sabooni M, Li Q, Rippe L et al. Spectral engineering of slow light, cavity line narrowing, and pulse compression[J]. Physical Review Letters, 111, 183602(2013). http://europepmc.org/abstract/med/24237519

    [30] Thiel C W, Cone R L, Böttger T. Laser linewidth narrowing using transient spectral hole burning[J]. Journal of Luminescence, 152, 84-87(2014). http://www.sciencedirect.com/science/article/pii/S002223131300759X

         Thiel C W, Cone R L, Böttger T. Laser linewidth narrowing using transient spectral hole burning[J]. Journal of Luminescence, 152, 84-87(2014). http://www.sciencedirect.com/science/article/pii/S002223131300759X

    [31] Thiel C W, Böttger T, Cone R L. Rare-earth-doped materials for applications in quantum information storage and signal processing[J]. Journal of Luminescence, 131, 353-361(2011). http://www.sciencedirect.com/science/article/pii/S002223131000534X

         Thiel C W, Böttger T, Cone R L. Rare-earth-doped materials for applications in quantum information storage and signal processing[J]. Journal of Luminescence, 131, 353-361(2011). http://www.sciencedirect.com/science/article/pii/S002223131000534X

    [32] Drever R W P, Hall J L, Kowalski F V et al. . Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics Photophysics and Laser Chemistry, 31, 97-105(1983). http://link.springer.com/article/10.1007/BF00702605

         Drever R W P, Hall J L, Kowalski F V et al. . Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics Photophysics and Laser Chemistry, 31, 97-105(1983). http://link.springer.com/article/10.1007/BF00702605

    [33] Young B C, Cruz F C, Itano W M et al. Visible Lasers with Subhertz Linewidths[J]. Physical Review Letters, 82, 3799-3802(1999). http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.82.3799

         Young B C, Cruz F C, Itano W M et al. Visible Lasers with Subhertz Linewidths[J]. Physical Review Letters, 82, 3799-3802(1999). http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.82.3799

    [34] Notcutt M, Ma L S, Ye J et al. Simple and compact 1 Hz laser system via an improved mounting configuration of a reference cavity[J]. Optics Letters, 30, 1815-1817(2005). http://www.opticsinfobase.org/abstract.cfm?id=84606

         Notcutt M, Ma L S, Ye J et al. Simple and compact 1 Hz laser system via an improved mounting configuration of a reference cavity[J]. Optics Letters, 30, 1815-1817(2005). http://www.opticsinfobase.org/abstract.cfm?id=84606

    [35] Chen L, Hall J L, Ye J et al. Vibration-induced elastic deformation of Fabry-Perot cavities[J]. Physical Review A, 74, 053801(2006). http://adsabs.harvard.edu/abs/2006phrva..74e3801c

         Chen L, Hall J L, Ye J et al. Vibration-induced elastic deformation of Fabry-Perot cavities[J]. Physical Review A, 74, 053801(2006). http://adsabs.harvard.edu/abs/2006phrva..74e3801c

    [36] Nicholson T L, Martin M J, Williams J R et al. Comparison of two independent Sr optical clocks with 1×10 -17 stability at 10 3 s [J]. Physical Review Letters, 109, 230801(2012). http://europepmc.org/abstract/MED/23368177

         Nicholson T L, Martin M J, Williams J R et al. Comparison of two independent Sr optical clocks with 1×10 -17 stability at 10 3 s [J]. Physical Review Letters, 109, 230801(2012). http://europepmc.org/abstract/MED/23368177

    [37] Matei D G, Legero T, Häfner S et al. 1.5 μm lasers with sub-10 mHz linewidth[J]. Physical Review Letters, 118, 263202(2017). http://www.opticsinfobase.org/abstract.cfm?uri=CLEO_SI-2017-SW1J.1

         Matei D G, Legero T, Häfner S et al. 1.5 μm lasers with sub-10 mHz linewidth[J]. Physical Review Letters, 118, 263202(2017). http://www.opticsinfobase.org/abstract.cfm?uri=CLEO_SI-2017-SW1J.1

    [38] Tay J W, Farr W G, Ledingham P M et al. Hybrid optical and electronic laser locking using slow light due to spectral holes[J]. Physical Review A, 87, 063824(2013). http://adsabs.harvard.edu/abs/2013PhRvA..87f3824T

         Tay J W, Farr W G, Ledingham P M et al. Hybrid optical and electronic laser locking using slow light due to spectral holes[J]. Physical Review A, 87, 063824(2013). http://adsabs.harvard.edu/abs/2013PhRvA..87f3824T

    [39] Cook S, Rosenband T, Leibrandt D R. Laser-frequency stabilization based on steady-state spectral-hole burning in Eu3+∶Y2SiO5[J]. Physical Review Letters, 114, 253902(2015). http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.253902

         Cook S, Rosenband T, Leibrandt D R. Laser-frequency stabilization based on steady-state spectral-hole burning in Eu3+∶Y2SiO5[J]. Physical Review Letters, 114, 253902(2015). http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.253902

    [40] Gobron O, Jung K, Galland N et al. Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals[J]. Optics Express, 25, 15539-15548(2017). http://www.ncbi.nlm.nih.gov/pubmed/28788976

         Gobron O, Jung K, Galland N et al. Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals[J]. Optics Express, 25, 15539-15548(2017). http://www.ncbi.nlm.nih.gov/pubmed/28788976

    [41] You Q. Spectral hole burning: a research tools with significant application potential[J]. Laser & Optoelectronics Progress, 29, 25-25(1992).

         You Q. Spectral hole burning: a research tools with significant application potential[J]. Laser & Optoelectronics Progress, 29, 25-25(1992).

    [42] Zhou F X. Persistence spectral hole burning and its application[J]. Laser & Optoelectronics Progress, 25, 13-15(1988).

         Zhou F X. Persistence spectral hole burning and its application[J]. Laser & Optoelectronics Progress, 25, 13-15(1988).

    [43] Huang J, Tang Z L, Niang R S. Technology of spectral hole burning[J]. Optical Technique, 26, 379-382(2000).

         Huang J, Tang Z L, Niang R S. Technology of spectral hole burning[J]. Optical Technique, 26, 379-382(2000).

    [44] Xue S L, Chen L B, Zhao Y Y et al. Persistent spectral hole burning of Eu 3+doped Y2SiO5crystal at 579.62 nm [J]. Journal of the Chinese Rare Earth Society, 24, 510-512(2006).

         Xue S L, Chen L B, Zhao Y Y et al. Persistent spectral hole burning of Eu 3+doped Y2SiO5crystal at 579.62 nm [J]. Journal of the Chinese Rare Earth Society, 24, 510-512(2006).

    [45] Wang W. Measurement of tunable laser frequency stability based on spectral-hole burning[D]. Tianjin: Tianjin University of Technology(2013).

         Wang W. Measurement of tunable laser frequency stability based on spectral-hole burning[D]. Tianjin: Tianjin University of Technology(2013).

    [46] Fan X L. Reduction of residual amplitude modulation in narrow linewidth PDH laser frequency stabilization technology[D]. Hangzhou: China University of Metrology(2016).

         Fan X L. Reduction of residual amplitude modulation in narrow linewidth PDH laser frequency stabilization technology[D]. Hangzhou: China University of Metrology(2016).

    [47] Su J, Jiao M X, Ma Y Y et al. Design of pound-drever-hall laser frequency stabilization system using the quadrature demodulation[J]. Chinese Journal of Lasers, 43, 0316001(2016).

         Su J, Jiao M X, Ma Y Y et al. Design of pound-drever-hall laser frequency stabilization system using the quadrature demodulation[J]. Chinese Journal of Lasers, 43, 0316001(2016).

    [48] Milani G, Rauf B, Barbieri P et al. Multiple wavelength stabilization on a single optical cavity using the offset sideband locking technique[J]. Optics Letters, 42, 1970-1973(2017). http://www.ncbi.nlm.nih.gov/pubmed/28504726

         Milani G, Rauf B, Barbieri P et al. Multiple wavelength stabilization on a single optical cavity using the offset sideband locking technique[J]. Optics Letters, 42, 1970-1973(2017). http://www.ncbi.nlm.nih.gov/pubmed/28504726

    [49] Han L, Bo Y, Yang J et al. -08-18(2017).

         Han L, Bo Y, Yang J et al. -08-18(2017).

    Lin Han, Yige Lin, Jing Yang, Yingjie Lan, Ye Li, Xiaojun Wang, Yong Bo, Qinjun Peng. Research and Development on Laser Frequency Stabilization Based on Spectral Hole-Burning Effect[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110003
    Download Citation