• Laser & Optoelectronics Progress
  • Vol. 59, Issue 3, 0300003 (2022)
Lili Zhang1、2, Shufeng Sun1、2、*, Xi Wang1、2, Fengyun Zhang1、2, Pingping Wang2, Chengming Cao3、4, and Zibin Zhang5
Author Affiliations
  • 1School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao , Shandong 266520, China
  • 2Shandong Research Center of Laser Green and High Efficiency Intelligent Manufacturing Engineering Technology, Qingdao , Shandong 266520, China
  • 3School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou , Jiangsu 221116, China
  • 4Shandong Energy Heavy Industry Group Hengtu Technology Co., Ltd., Taian, Shandong 271222, China
  • 5Qingdao Gocci Opto-Electronics Technology Co., Ltd., Qingdao , Shandong 266109, China
  • show less
    DOI: 10.3788/LOP202259.0300003 Cite this Article Set citation alerts
    Lili Zhang, Shufeng Sun, Xi Wang, Fengyun Zhang, Pingping Wang, Chengming Cao, Zibin Zhang. Research Progress of Laser Micro-Nano Connection Technology[J]. Laser & Optoelectronics Progress, 2022, 59(3): 0300003 Copy Citation Text show less
    References

    [1] Hu A, Panda S K, Khan M I et al. Laser welding, microwelding, nanowelding and nanoprocessing[J]. Chinese Journal of Lasers, 36, 3149-3159(2009).

    [2] Zhou Y[M]. Microjoining and nanojoining(2008).

    [3] Mukhopadhyay P, Ghosh A. High vacuum brazing of synthetic diamond grits with steel using micro/nano Al2O3 reinforced Ag-Cu-Ti alloy[J]. Journal of Materials Processing Technology, 266, 198-207(2019).

    [4] Sang S, Li D, Wang C R et al. Microstructure and mechanical properties of electron beam welded joints of tantalum and GH3128[J]. Materials Science and Engineering: A, 768, 138431(2019).

    [5] Ren D X, Zhao D W, Li C B et al. Resistance ceramic-filled annular welding of thin steel sheets[J]. Journal of Manufacturing Processes, 45, 588-594(2019).

    [6] Hu Y Y, Liu H J, Fujii H et al. Vacancy-induced θ' precipitation during ultrasonic-affected friction stir welding of Al-Cu alloy[J]. Journal of Materials Science, 55, 14626-14641(2020).

    [7] Zhao X K, Xing D S, Liu D Y. Research and application development on laser micro joining technology[J]. Aeronautical Manufacturing Technology, 60, 28-34(2017).

    [8] Xue Z, Yang Q, Gu L et al. Diffusion bonding of TiAl based alloy to Ti-6Al-4V alloy using amorphous interlayer[J]. Materialwissenschaft Und Werkstofftechnik, 46, 40-46(2015).

    [9] Hopkins R E, Buzawa M J. Optics for laser scanning[J]. Optical Engineering, 15, 150290(1976).

    [10] Wang L, Gao M, Zeng X Y. Experiment and prediction of weld morphology for laser oscillating welding of AA6061 aluminium alloy[J]. Science and Technology of Welding and Joining, 24, 334-341(2019).

    [11] Hoult A P, McLenaghan A J, Rathod J. Advances in laser soldering using high power diode lasers[J]. Proceedings of SPIE, 4831, 71-76(2003).

    [12] Tao W, Yang Z B, Chen Y B et al. Double-sided fiber laser beam welding process of T-joints for aluminum aircraft fuselage panels: filler wire melting behavior, process stability, and their effects on porosity defects[J]. Optics & Laser Technology, 52, 1-9(2013).

    [13] Laferriere P, Fukumoto A. Laser-diode based soldering system with vision capabilities[C], 324-328(1995).

    [14] Pudas M, Hagberg J, Leppävuori S. Roller-type gravure offset printing of conductive inks for high-resolution printing on ceramic substrates[J]. International Journal of Electronics, 92, 251-269(2005).

    [15] Zou G S, Yan J F, Mu F W et al. Recent progress in microjoining and nanojoining[J]. Transactions of the China Welding Institution, 32, 107-112, 118(2011).

    [16] Mazumder J. Overview of melt dynamics in laser processing[J]. Optical Engineering, 30, 1208-1219(1991).

    [17] Duley W W[M]. Laser welding(1999).

    [18] Song Y G. Numerical simulation and experimental study on laser brazing film CBN gear-honing-tool[D](2009).

    [19] Miyamoto I, Horn A, Gottmann J et al. Fusion welding of glass using femtosecond laser pulses with high-repetition rates[J]. Journal of Laser Micro/Nanoengineering, 2, 57-63(2007).

    [20] Petring D, Goneghany V N. Parameter dependencies of copper welding with multi-kW lasers at 1 micron wavelength[J]. Physics Procedia, 12, 95-104(2011).

    [21] Sun X, Zhang L J, Suckjoo N. Effect of power density on penetration depth and microstructure in laser welding joint of DP590 steel[J]. Journal of Netshape Forming Engineering, 12, 111-116(2020).

    [22] Volpe A, di Niso F, Gaudiuso C et al. Femtosecond fiber laser welding of PMMA[J]. Proceedings of SPIE, 9531, 935106(2015).

    [23] Miranda R M, Quintino L, Williams S et al. Welding with high power fiber laser API5L-X100 pipeline steel[J]. Materials Science Forum, 636/637, 592-596(2010).

    [24] Ismail M I S, Okamoto Y, Uno Y. Numerical simulation on micro-welding of thin stainless steel sheet by fiber laser[J]. International Journal of Electrical Machining, 16, 9-14(2011).

    [25] Liebl S, Wiedenmann R, Ganser A et al. Laser welding of copper using multi mode fiber lasers at near infrared wavelength[J]. Physics Procedia, 56, 591-600(2014).

    [26] Sathiya P, Panneerselvam K, Soundararajan R. Optimal design for laser beam butt welding process parameter using artificial neural networks and genetic algorithm for super austenitic stainless steel[J]. Optics & Laser Technology, 44, 1905-1914(2012).

    [27] Du W Z, Huang T, Cao Z et al. Galvanometer scanning laser-micro-welding of AISI304 stainless-steel foil[J]. Chinese Journal of Lasers, 46, 1102006(2019).

    [28] Petrich M, Stambke M, Bergmann J P. Examinations on laser remote welding of ultra-thin metal foils under vacuum conditions[J]. Physics Procedia, 56, 768-775(2014).

    [29] Kim C, Kang M, Kang N. Solidification crack and morphology for laser weave welding of Al 5J32 alloy[J]. Science and Technology of Welding and Joining, 18, 57-61(2013).

    [30] Hao K D, Li G, Gao M et al. Weld formation mechanism of fiber laser oscillating welding of austenitic stainless steel[J]. Journal of Materials Processing Technology, 225, 77-83(2015).

    [31] Huang R S, Zou J P, Meng S H et al. Process characteristics of laser scanning welding of aluminum alloy[J]. Transactions of the China Welding Institution, 40, 61-66, 163(2019).

    [32] Miyagi M, Zhang X D, Kawahito Y et al. Surface void suppression for pure copper by high-speed laser scanner welding[J]. Journal of Materials Processing Technology, 240, 52-59(2017).

    [33] Huang D L, Yang Y Q. Precise laser seam welding of ultra thin stainless steel sheet[J]. Welding Technology, 38, 7, 34-36(2009).

    [34] Esposito G, Rossi F, Puca A et al. An experimental study on minimally occlusive laser-assisted vascular anastomosis in bypass surgery: the importance of temperature monitoring during laser welding procedures[J]. Journal of Biological Regulators and Homeostatic Agents, 24, 307-315(2010).

    [35] Oliveira J P, Fernandes F M B, Schell N et al. Shape memory effect of laser welded NiTi plates[J]. Functional Materials Letters, 8, 1550069(2015).

    [36] Yao R H, Dong P, Liaw P K et al. Microstructure and shape memory effect of laser welded Nitinol wires[J]. Materials Letters, 238, 1-5(2019).

    [37] Chan C W, Man H C, Yue T M. Susceptibility to stress corrosion cracking of NiTi laser weldment in Hanks’ solution[J]. Corrosion Science, 57, 260-269(2012).

    [38] Dong P, Yao R H, Yan Z et al. Microstructure and corrosion resistance of laser-welded crossed nitinol wires[J]. Materials, 11, 842(2018).

    [39] Long J, Jiao B Z, Fan X H et al. Femtosecond laser assembly of one-dimensional nanomaterials and their application[J]. Chinese Journal of Lasers, 48, 0202017(2021).

    [40] Kim S J, Jang D J. Laser-induced nanowelding of gold nanoparticles[J]. Applied Physics Letters, 86, 033112(2005).

    [41] She J C, An S, Deng S Z et al. Laser welding of a single tungsten oxide nanotip on a handleable tungsten wire: a demonstration of laser-weld nanoassembly[J]. Applied Physics Letters, 90, 073103(2007).

    [42] Qian M, Goh C S, Sun Y H et al. Effects of CNTs on microstructure and hardness of laser welds of the CNT-reinforced magnesium composite[J]. Composites Part A: Applied Science and Manufacturing, 48, 67-72(2013).

    [43] Bhat A, Balla V K, Bysakh S et al. Carbon nanotube reinforced Cu-10Sn alloy composites: mechanical and thermal properties[J]. Materials Science and Engineering: A, 528, 6727-6732(2011).

    [44] Fan W Z, Zhao Q Z. Recent progress in ultrashort pulsed laser microwelding of glasses[J]. Laser & Optoelectronics Progress, 52, 080001(2015).

    [45] Alexeev I, Cvecek K, Schmidt C et al. Characterization of shear strength and bonding energy of laser produced welding seams in glass[J]. Journal of Laser Micro/Nanoengineering, 7, 279-283(2012).

    [46] Chen J, Carter R M, Thomson R R et al. Avoiding the requirement for pre-existing optical contact during picosecond laser glass-to-glass welding[J]. Optics Express, 23, 18645-18657(2015).

    [47] Zhang G D, Bai J, Zhao W et al. Interface modification based ultrashort laser microwelding between SiC and fused silica[J]. Optics Express, 25, 1702-1709(2017).

    [48] Chen H, Deng L M, Duan J et al. Picosecond laser welding of glasses with a large gap by a rapid oscillating scan[J]. Optics Letters, 44, 2570-2573(2019).

    [49] Richter S, Zimmermann F, Tünnermann A et al. Laser welding of glasses at high repetition rates‒Fundamentals and prospects[J]. Optics & Laser Technology, 83, 59-66(2016).

    [50] Hélie D, Gouin S, Vallée R. Assembling an endcap to optical fibers by femtosecond laser welding and milling[J]. Optical Materials Express, 3, 1742-1754(2013).

    [51] Volpe A, di Niso F, Gaudiuso C et al. Welding of PMMA by a femtosecond fiber laser[J]. Optics Express, 23, 4114-4124(2015).

    [52] Li J Q, Yan J F, Li X et al. Research advancement on ultrafast laser microprocessing of transparent dielectrics[J]. Chinese Journal of Lasers, 48, 0202019(2021).

    [53] Sun K, Sun S Z, Qiu J R. Research progress on ultrashort pulsed laser welding of non-metallic materials[J]. Laser & Optoelectronics Progress, 57, 111422(2020).

    [54] Li Y X, Chen C, Yi R X et al. Review: special brazing and soldering[J]. Journal of Manufacturing Processes, 60, 608-635(2020).

    [55] Klocke F, Castell-Codesal A, Donst D. Process characteristics of laser brazing aluminium alloys[J]. Advanced Materials Research, 6/7, 135-142(2005).

    [56] Lai Z M, Zhang L, Wang J X. Effects of different solders on mechanical properties of micro-joints soldered with diode-laser soldering system[J]. Transactions of the China Welding Institution, 32, 85-88, 117(2011).

    [57] Han Z J. Diode laser soldering to electronic mounting components/devices with lead-free solder[D](2009).

    [58] Kim J O, Jung J P, Lee J H et al. Effects of laser parameters on the characteristics of a Sn-3.5 wt.%Ag solder joint[J]. Metals and Materials International, 15, 119-123(2009).

    [59] Xue S B, Huang X, Wu Y X et al. Effects of laser soldering speed on mechanical properties of SOP micro-joints[J]. Transactions of the China Welding Institution, 28, 21-24, 114(2007).

    [60] Kim T W, Park Y W. Parameter optimization using a regression model and fitness function in laser welding of aluminum alloys for car bodies[J]. International Journal of Precision Engineering and Manufacturing, 12, 313-320(2011).

    [61] Yu Z H, Hu Y L, Dong Q Y et al. Laser soldering technology and its application exploration in high precision inertial instruments[J]. Navigation and Control, 18, 7-8, 67-74(2019).

    [62] Tan Z D, Zhou X, Wang H Y. Features and advantages of laser soldering[C], 135-138(2020).

    [63] Flanagan A, Conneely A, Glynn T J et al. Laser soldering and inspection of fine pitch electronic components[J]. Journal of Materials Processing Technology, 56, 531-541(1996).

    [64] Bath J, Handwerker C, Bradely E. Research update: lead-free solder alternatives[J]. Circuits Assembly, 5, 30-34(2000).

    [65] Beckett P M, Fleming A R, Gilbert J M et al. Numerical modelling of scanned beam laser soldering of fine pitch packages[J]. Soldering & Surface Mount Technology, 14, 24-29(2002).

    [66] Fidan I. CAPP for electronics manufacturing case study: fine pitch SMT laser soldering[J]. Journal of Electronic Packaging, 126, 173-176(2004).

    [67] Han Z J, Xue S B, Wang J X et al. Laser soldering of fine pitch QFP devices using lead-free solders[J]. Journal of Electronic Packaging, 131, 021004(2009).

    [68] Han Z J, Xue S B, Wang J X et al. Mechanical properties of QFP micro-joints soldered with lead-free solders using diode laser soldering technology[J]. Transactions of Nonferrous Metals Society of China, 18, 814-818(2008).

    [69] Zhang L, Han J G, Guo Y H et al. Microstructures and properties of SnAgCuCe solder joints with diode-laser soldering[J]. Chinese Rare Earths, 36, 91-95(2015).

    [70] Takahashi J, Nakahara S, Hisada S et al. Laser soldering of Sn-Ag-Cu and Sn-Zn-Bi lead-free solder pastes[J]. Proceedings of SPIE, 5662, 355-360(2004).

    [71] Jiang N, Zhang L, Xiong M Y et al. Research progress on lead-free soldering technology for electronic packaging[J]. Materials Reports, 33, 3862-3875(2019).

    [72] Suganuma K. Advances in lead-free electronics soldering[J]. Current Opinion in Solid State and Materials Science, 5, 55-64(2001).

    [73] Fukuda Y, Casey P, Pecht M. Evaluation of selected Japanese lead-free consumer electronics[J]. IEEE Transactions on Electronics Packaging Manufacturing, 26, 305-312(2003).

    [74] Hoult A P, Ong R S, Malshe A P et al. A direct comparison of diode laser soldering of lead-tin and lead-free solders[J]. ICALEO, 1160-1168(2001).

    [75] Sheng C. Prediction on thermal fatigue life & study on the reliability of QFP soldered joint[D](2010).

    [76] Nishikawa H, Iwata N. Formation and growth of intermetallic compound layers at the interface during laser soldering using Sn-Ag Cu solder on a Cu Pad[J]. Journal of Materials Processing Technology, 215, 6-11(2015).

    [77] Zhao M, Zhang L, Xiong M Y. Research status and development trend of Sn-Cu lead-free solders[J]. Materials Reports, 33, 2467-2478(2019).

    [78] Wang J H, Xue S B, Lü Z P et al. Present research status of lead-free solder reinforced by nanoparticles[J]. Materials Reports, 33, 2133-2145(2019).

    [79] Tsao L C, Chang S Y. Effects of nano-TiO2 additions on thermal analysis, microstructure and tensile properties of Sn3.5Ag0.25Cu solder[J]. Materials & Design, 31, 990-993(2010).

    [80] Yang L M, Zhang Z F. Effects of Y2O3 nanoparticles on growth behaviors of Cu6Sn5 grains in soldering reaction[J]. Journal of Electronic Materials, 42, 3552-3558(2013).

    [81] Gain A K, Fouzder T, Chan Y C et al. The influence of addition of Al nano-particles on the microstructure and shear strength of eutectic Sn-Ag-Cu solder on Au/Ni metallized Cu pads[J]. Journal of Alloys and Compounds, 506, 216-223(2010).

    [82] El-Daly A A, El-Hosainy H, Elmosalami T A et al. Microstructural modifications and properties of low-Ag-content Sn-Ag-Cu solder joints induced by Zn alloying[J]. Journal of Alloys and Compounds, 653, 402-410(2015).

    [83] Li M L, Zhang L, Jiang N et al. Research progress of using nano-particles to improve properties of lead-free solders[J]. Materials Reports, 35, 5130-5139(2021).

    [84] Gan Y W, Chen D D, Teng Y et al. Wettability of SnAgCu lead-free solder with trace elements[J]. Chinese Journal of Rare Metals, 43, 846-853(2019).

    [85] Lima M S F, Riva R, Destro M G et al. Characterization of a laser-soldered avionic component using lead-free paste[J]. Optics & Laser Technology, 41, 159-164(2009).

    [86] Amin R. Soldering with diode lasers[J]. Surface Mount Technology, 14, 78-80(2000).

    [87] Wei G Q, Yang Y Q, Wen Z J. Investigation on fluxless laser jet bumping technology[J]. Laser Technology, 31, 575-577(2007).

    [88] Ji H J, Ma Y Y, Li M Y et al. Effect of the silver content of SnAgCu solder on the interfacial reaction and on the reliability of angle joints fabricated by laser-jet soldering[J]. Journal of Electronic Materials, 44, 733-743(2015).

    [89] Yue W, Zhou M B, Zhang X P. Reliability and failure analysis of electronic components induced by the reflection of laser beam in the laser jet solder ball bonding process[C], 1658-1662(2017).

    [90] Yue W, Gong C G, Zhang J X et al. Analysis on tin spattering of a micro solder joint during laser jet solder ball bonding process[J]. Chinese Journal of Lasers, 47, 0802010(2020).

    [91] Yang L. Self-assembly of MEMS microcomponents and laser-induced actuation behaviors of molten droplets based on solder ball reflow[D](2014).

    [92] Lai R F. Design and experimental research of laser solder bumping system[D](2010).

    [93] Zhang H, Yang J, Li Y. Effects of laser ball planting parameters on shear force of welded ball[J]. Electronics & Packaging, 19, 5-7, 12(2019).

    [94] Zou X J. The research and development of laser-soldering system based on BGA chips[D](2007).

    [95] Shi W Q, Yang Y Q, Guo W et al. Effects of laser pulse frequency and scanning mode on welding quality in soldering by fiber laser[J]. Chinese Journal of Lasers, 36, 494-497(2009).

    [96] Tian Y H, Wang C Q, Liu D M. Thermalmechanical behavior of PBGA package during laser and hot air reflow soldering[C], 293-299(2002).

    [97] Tian Y H, Wang C Q. Effects of laser and infrared secondary reflow on microstructure of 63Sn37Pb/pad interface[J]. The Chinese Journal of Nonferrous Metals, 12, 471-475(2002).

    [98] Tian Y H, Wang C Q, Zhang X D. Reaction kinetics between SnPb eutectic solder and Au/Ni/Cu pad during laser reflow[J]. Material Science and Technology, 10, 136-139(2002).

    [99] Lee J H, Lee Y H, Kim Y S. Fluxless laser reflow bumping of Sn-Pb eutectic solder[J]. Scripta Materialia, 42, 789-793(2000).

    [100] Lee J H, Park D, Moon J T et al. Characteristics of the Sn-Pb eutectic solder bump formed via fluxless laser reflow soldering[J]. Journal of Electronic Materials, 29, 1153-1159(2000).

    [101] Yue W, Zhang X P. Essential factors influencing the wettability of Sn-3.0Ag-0.5Cu solder balls on Au pad of the right-angle solder interconnect in laser jet solder ball bonding[C], 930-934(2015).

    [102] Yue W, Zhou M B, Zhang X P. Effect of the Au bonding pad contamination on the wettability of Au/Sn-3.0Ag-0.5Cu/Au solder joints in flux-free laser jet solder ball bonding process[C], 1201-1205(2016).

    [103] Mehdizadeh N Z, Raessi M, Chandra S et al. Effect of substrate temperature on splashing of molten tin droplets[J]. Journal of Heat Transfer, 126, 445-452(2004).

    [104] Wang L D, Mills J K, Cleghorn W L. Automatic microassembly using visual servo control[J]. IEEE Transactions on Electronics Packaging Manufacturing, 31, 316-325(2008).

    Lili Zhang, Shufeng Sun, Xi Wang, Fengyun Zhang, Pingping Wang, Chengming Cao, Zibin Zhang. Research Progress of Laser Micro-Nano Connection Technology[J]. Laser & Optoelectronics Progress, 2022, 59(3): 0300003
    Download Citation