[1] Li Z K, Liu B, Wang H C et al. Target tracking and ranging based on single photon detection[J]. Photonics, 8, 278(2021).
[2] Li D D U, Ameer-Beg S, Arlt J et al. Time-domain fluorescence lifetime imaging techniques suitable for solid-state imaging sensor arrays[J]. Sensors, 12, 5650-5669(2012).
[3] Mandai S, Fishburn M W, Maruyama Y et al. A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology[J]. Optics Express, 20, 5849-5857(2012).
[4] Henderson R K, Webster E A G, Grant L A. A dual-junction single-photon avalanche diode in 130-nm CMOS technology[J]. IEEE Electron Device Letters, 34, 429-431(2013).
[5] Savuskan V, Gal L, Cristea D et al. Single photon avalanche diode collection efficiency enhancement via peripheral well-controlled field[J]. IEEE Transactions on Electron Devices, 62, 1939-1945(2015).
[6] Wang W, Wang G A, Zeng H A et al. A low dark count rate single photon avalanche diode with standard 180 nm CMOS technology[J]. Modern Physics Letters B, 33, 1950099(2019).
[7] Hofbauer M, Steindl B, Schneider-Hornstein K et al. Performance of high-voltage CMOS single-photon avalanche diodes with and without well-modulation technique[J]. Optical Engineering, 59, 040502(2020).
[8] Ghioni M, Gulinatti A, Rech I et al. Progress in silicon single-photon avalanche diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 852-862(2007).
[9] Gersbach M, Richardson J, Mazaleyrat E et al. A low-noise single-photon detector implemented in a 130 nm CMOS imaging process[J]. Solid-State Electronics, 53, 803-808(2009).
[10] Finkelstein H, Hsu M J, Esener S C. STI-bounded single-photon avalanche diode in a deep-submicrometer CMOS technology[J]. IEEE Electron Device Letters, 27, 887-889(2006).
[11] Zeng M L, Wang Y, Jin X L et al. Design, fabrication, and verification of blue-extended single-photon avalanche diode with low dark count rate and high photon detection efficiency[J]. Journal of Nanoelectronics and Optoelectronics, 16, 546-551(2021).
[12] Pancheri L, Stoppa D, Dalla Betta G F. Characterization and modeling of breakdown probability in sub-micrometer CMOS SPADs[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 328-335(2014).
[13] Webster E A G, Grant L A, Henderson R K. A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology[J]. IEEE Electron Device Letters, 33, 1589-1591(2012).
[14] Niclass C, Gersbach M, Henderson R et al. A single photon avalanche diode implemented in 130-nm CMOS technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 863-869(2007).
[15] Jegannathan G, Van den Dries T, Kuijk M. Current-assisted SPAD with improved p-n junction and enhanced NIR performance[J]. Sensors, 20, 7105(2020).
[16] Renna M, Ruggeri A, Sanzaro M et al. High detection rate fast-gated CMOS single-photon avalanche diode module[J]. IEEE Photonics Journal, 12, 6802312(2020).
[17] Wu D R, Tsai C M, Huang Y H et al. Crosstalk between single-photon avalanche diodes in a 0.18-μm high-voltage CMOS process[J]. Journal of Lightwave Technology, 36, 833-837(2018).
[18] Li J L, Sun K X. Light absorption characteristics of a graphene photodetector based on nano-metal modification[J]. Laser & Optoelectronics Progress, 59, 2124003(2022).
[19] Veerappan C, Charbon E. CMOS SPAD based on photo-carrier diffusion achieving PDP >40% from 440 to 580 nm at 4 V excess bias[J]. IEEE Photonics Technology Letters, 27, 2445-2448(2015).
[20] Cova S, Ghioni M, Lacaita A et al. Avalanche photodiodes and quenching circuits for single-photon detection[J]. Applied Optics, 35, 1956-1976(1996).
[21] Feng S L, Chen R P, Wang W W et al. Novel Se microtube/spiro-MeOTAD heterojunction photodetector[J]. Acta Optica Sinica, 42, 2023002(2022).
[22] Veerappan C, Charbon E. A low dark count p-i-n diode based SPAD in CMOS technology[J]. IEEE Transactions on Electron Devices, 63, 65-71(2016).