• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 6, 791 (2021)
Yuan-Yuan CHU1, Ying-Mei LIU1, Sheng-Juan LI1, Zhi-Cheng XU3, Jian-Xin CHEN3, and Xing-Jun WANG2、*
Author Affiliations
  • 1School of Materials Science and Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • 2State Key Laboratory of Infrared Physics ,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 3Key Laboratory of Infrared Imaging Materials and Devices,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.06.013 Cite this Article
    Yuan-Yuan CHU, Ying-Mei LIU, Sheng-Juan LI, Zhi-Cheng XU, Jian-Xin CHEN, Xing-Jun WANG. Effect of lattice mismatch on the temperature dependence of Raman scattering in GaAsSb / InP heterostructures[J]. Journal of Infrared and Millimeter Waves, 2021, 40(6): 791 Copy Citation Text show less
    References

    [1] D L Dheeraj, G Patriarche, L Largeau et al. Zinc blende GaAsSb nanowires grown by molecular beam epitaxy. Nanotechnology, 19, 275605(2008).

    [2] J Huh, D C Kim, A M Munshi et al. Low frequency noise in single GaAsSb nanowires with self-induced compositional gradients. Nanotechnology, 27, 385703(2016).

    [3] L Ma, X Zhang, H Li et al. Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31μm. Semiconductor Science and Technology, 30, 6-12(2015).

    [4] D Ren, D L Dheeraj, C Jin et al. New insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays. Nano Letters, 16, 1201-1209(2016).

    [5] W Y Qiu, X J Wang, P P Chen et al. Optical spin polarization and Hanle effect in GaAsSb: Temperature dependence. Applied Physics Letters, 105, 082104(2014).

    [6] E Ahmad, M R Karim, S B Hafiz et al. A two-step growth pathway for high Sb incorporation in GaAsSb nanowires in the telecommunication wavelength range. Nature, 7, 10111(2017).

    [7] C Y Chou, A Torfi, W I Wang et al. Improvement of GaAsSb alloys on InP grown by molecular beam epitaxy with substrate tilting. Journal of Applied Physics, 114, 17-22(2013).

    [8] Z Li, X Yuan, L Fu et al. Room temperature GaAsSb single nanowire infrared photodetectors. Nanotechnology, 26, 445202(2015).

    [9] R M Cohen, M J Cherng, R E Benner et al. Raman and photoluminescence spectra of GaAs1-xSbx. Journal of Applied Physics, 57, 4817-4819(1985).

    [10] S Das, A S Sharma, S Bakshi et al. Photoluminescence investigation of the properties of GaAsSb in the dilute Sb regime. Journal of Materials Science: Materials in Electronics, 31, 6255-6262(2020).

    [11] X Gao, F Zhao, X Fang et al. Optical characteristics of GaAsSb alloy after rapid thermal annealing. Semiconductor Science and Technology, 32, 114007(2017).

    [12] P Verma, S C Abbi, K P Jain et al. Raman-scattering probe of anharmonic effects in GaAs. Phys Rev B Condens Matter, 51, 16660-16667(1995).

    [13] C Ramkumar, K P Jain, S C Abbi et al. Raman-scattering probe of anharmonic effects due to temperature and compositional disorder in III-V binary and ternary alloy semiconductors. Physical Review B, 53, 13672-13681(1996).

    [14] D Linde vonder, J Kuhl, H Klingenberg et al. Raman Scattering from Nonequilibrium LO Phonons with Picosecond Resolution. Physical Review Letters, 44, 1505-1508(1980).

    [15] J A Kash, R G Ulbrich, J C Tsang et al. Quantitative measurements of intervalley and carrier-carrier scattering in GaAs with hot luminescence. Solid State Electronics, 32, 1277-1281(1989).

    [16] Y M Liu, Y Y Chu, Y Lu et al. Lattice-optimized GaAsSb/InP heterojunction toward both efficient carier confinement and thermal dissipation. Physica Status Solidi-Rapid Research Letters, 14, 2000108(2020).

    [17] S P Bremner, K Ghosh, L Nataraj et al. Influence of Sb/As soak times on the structural and optical properties of GaAsSb/GaAs interfaces. Thin Solid Films, 519, 64-68(2010).

    [18] P Deshmukh, M Sharma, S Nalamati et al. Molecular beam epitaxial growth of high-quality Ga-catalyzed GaAs1–xSbx (x>0.8) nanowires on Si(111) with photoluminescence emission reaching 1.7 μm. Semiconductor Science and Technology, 33, 125007(2018).

    [19] S V Morozov, D I Kryzhkov, V I Gavrilenko et al. Determination of the heterojunction type in structures with GaAsSb/GaAs quantum wells with various antimony fractions by optical methods. Semiconductors, 46, 1376-1380(2012).

    [20] C P Dietrich, M Lange, G Benndorf et al. Competing exciton localization effects due to disorder and shallow defects in semiconductor alloys. New Journal of Physics, 12, 003030(2010).

    [21] M Balkanski, R F Wallis, E Haro. Anharmonic effects in light scattering due to optical phonons in silicon. Physical Review B, 28, 1928-1934(1983).

    [22] M Mączka, M L Sanjuán, A F Fuentes et al. Temperature-dependent Raman study of the spin-liquid pyrochlore Tb2Ti2O7. Physical Review B, 78, 134420(2008).

    [23] J V Silveira, L L Vieira, J M Filho et al. Temperature-dependent Raman spectroscopy study in MoO3 nanoribbons. Journal of Raman Spectroscopy, 43, 1407-1412(2012).

    [24] A V Stanchik, M S Tivanov, I I Tyukhov et al. Temperature dependence of Raman scattering in the Cu2ZnSnSe4 thin films on a Ta foil substrate. Solar Energy, 201, 480-488(2020).

    [25] L X Hung, P T Nga, N N Dat et al. Temperature Dependence of Raman and photoluminescence spectra of ternary alloyed CdSe0.3Te0.7 quantum dots. Journal of Electronic Materials, 49, 2568-2577(2020).

    [26] Y Q Chen, B Peng, B Wang. Raman spectra and temperature-dependent raman scattering of silicon nanowires. The Journal of Physical Chemistry C, 111, 5855-5858(2007).

    [27] M Prema Rani, R Saravanan. Influence of silicon and boron doping on the thermal conductivity of n-gaas single crystals. Materials Science Forum, 671, 153-163.

    Yuan-Yuan CHU, Ying-Mei LIU, Sheng-Juan LI, Zhi-Cheng XU, Jian-Xin CHEN, Xing-Jun WANG. Effect of lattice mismatch on the temperature dependence of Raman scattering in GaAsSb / InP heterostructures[J]. Journal of Infrared and Millimeter Waves, 2021, 40(6): 791
    Download Citation