• Photonics Research
  • Vol. 10, Issue 2, 433 (2022)
Guan Wang1、2、†, Zhongwang Pang1、2、†, Bohan Zhang1, Fangmin Wang1、2, Yufeng Chen1、2, Hongfei Dai1、2, Bo Wang1、2、*, and Lijun Wang1、2
Author Affiliations
  • 1State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • 2Key Laboratory of Photonic Control Technology (Tsinghua University), Ministry of Education, Beijing 100084, China
  • show less
    DOI: 10.1364/PRJ.443019 Cite this Article Set citation alerts
    Guan Wang, Zhongwang Pang, Bohan Zhang, Fangmin Wang, Yufeng Chen, Hongfei Dai, Bo Wang, Lijun Wang. Time shifting deviation method enhanced laser interferometry: ultrahigh precision localizing of traffic vibration using an urban fiber link[J]. Photonics Research, 2022, 10(2): 433 Copy Citation Text show less
    References

    [1] L.-S. Ma, P. Jungner, J. Ye, J. L. Hall. Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Opt. Lett., 19, 1777-1779(1994).

    [2] N. R. Newbury, P. A. Williams, W. C. Swann. Coherent transfer of an optical carrier over 251 km. Opt. Lett., 32, 3056-3058(2007).

    [3] M. Fujieda, M. Kumagai, S. Nagano, A. Yamaguchi, H. Hachisu, T. Ido. All-optical link for direct comparison of distant optical clocks. Opt. Express, 19, 16498-16507(2011).

    [4] K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, H. Schnatz. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science, 336, 441-444(2012).

    [5] B. Wang, C. Gao, W. L. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, L. J. Wang. Precise and continuous time and frequency synchronisation at the 5 × 10−19 accuracy level. Sci. Rep., 2, 556(2012).

    [6] D. Calonico, E. K. Bertacco, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, F. Levi. High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link. Appl. Phys. B, 117, 979-986(2014).

    [7] T. B. Gibbon, E. K. Rotich Kipnoo, R. R. G. Gamatham, A. W. R. Leitch, R. Siebrits, R. Julie, S. Malan, W. Rust, F. Kapp, T. L. Venkatasubramani, B. Wallace, A. Peens-Hough, P. Herselman. Fiber-to-the-telescope: MeerKAT, the South African precursor to square kilometre telescope array. J. Astron. Telesc. Instrum. Syst., 1, 028001(2015).

    [8] C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, P.-E. Pottie. A clock network for geodesy and fundamental science. Nat. Commun., 7, 12443(2016).

    [9] D. Li, C. Qian, Y. Li, J. Y. Zhao. Efficient laser noise reduction method via actively stabilized optical delay line. Opt. Express, 25, 9071-9077(2017).

    [10] C. Clivati, A. Tampellini, A. Mura, F. Levi, G. Marra, P. Galea, A. Xuereb, D. Calonico. Optical frequency transfer over submarine fiber links. Optica, 5, 893-901(2018).

    [11] Y. He, K. G. H. Baldwin, B. J. Orr, R. B. Warrington, M. J. Wouters, A. N. Luiten, P. Mirtschin, T. Tzioumis, C. Phillips, J. Stevens, B. Lennon, S. Munting, G. Aben, T. Newlands, T. Rayner. Long-distance telecom-fiber transfer of a radio-frequency reference for radio astronomy. Optica, 5, 138-146(2018).

    [12] S. Ebenhag, P. O. Hedekvist, C. Rieck, M. Bergroth, P. Krehlik, L. Sliwczynski. Evaluation of fiber optic time and frequency distribution system in a coherent communication network. Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC), 1-5(2019).

    [13] J. B. Ajo-Franklin, S. Dou, N. J. Lindsey, I. Monga, C. Tracy, M. Robertson, V. Rodriguez Tribaldos, C. Ulrich, B. Freifeld, T. Daley, X. Li. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection. Sci. Rep., 9, 1328(2019).

    [14] M. Karrenbach, S. Cole, L. LaFlame, E. Bozdağ, W. Trainor-Guitton, B. Luo. Horizontally orthogonal distributed acoustic sensing array for earthquake- and ambient-noise-based multichannel analysis of surface waves. Geophys. J. Int., 222, 2147-2161(2020).

    [15] G. Marra, C. Clivati, R. Luckett, A. Tampellini, J. Kronjaeger, L. Wright, A. Mura, F. Levi, S. Robinson, A. Xuereb, B. Baptie, D. Calonico. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables. Science, 361, 486-490(2018).

    [16] P. Jousset, T. Reinsch, T. Ryberg, H. Blanck, A. Clarke, R. Aghayev, G. P. Hersir, J. Henninges, M. Weber, C. M. Krawczyk. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat. Commun., 9, 2509(2018).

    [17] E. F. Williams, M. R. Fernandez-Ruiz, R. Magalhaes, R. Vanthillo, Z. Zhan, M. Gonzalez-Herraez, H. F. Martins. Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nat. Commun., 10, 5778(2019).

    [18] A. Sladen, D. Rivet, J. P. Ampuero, L. De Barros, Y. Hello, G. Calbris, P. Lamare. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nat. Commun., 10, 5777(2019).

    [19] A. Mecozzi, M. Cantono, J. C. Castellanos, V. Kamalov, R. Muller, Z. Zhan. Polarization sensing using submarine optical cables. Optica, 8, 788-795(2021).

    [20] Y. C. Guo, B. Wang, H. W. Si, Z. W. Cai, A. M. Zhang, X. Zhu, J. Yang, K. M. Feng, C. H. Han, T. C. Li, L. J. Wang. Correlation measurement of co-located hydrogen masers. Metrologia, 55, 631-636(2018).

    [21] Y. C. Guo, B. Wang, F. M. Wang, F. F. Shi, A. M. Zhang, X. Zhu, J. Yang, K. M. Feng, C. H. Han, T. C. Li, L. J. Wang. Real-time free-running time scale with remote clocks on fiber-based frequency network. Metrologia, 56, 045003(2019).

    [22] D. A. Jackson, A. Dandridge, S. K. Sheem. Measurement of small phase shifts using a single-mode optical-fiber interferometer. Opt. Lett., 5, 139-141(1980).

    [23] Q. M. Chen, C. Jin, Y. Bao, Z. H. Li, J. P. Li, C. Lu, L. Yang, G. F. Li. A distributed fiber vibration sensor utilizing dispersion induced walk-off effect in a unidirectional Mach-Zehnder interferometer. Opt. Express, 22, 2167-2173(2014).

    [24] J. W. Huang, Y. C. Chen, Q. H. Song, H. K. Peng, P. W. Zhou, Q. Xiao, B. Jia. Distributed fiber-optic sensor for location based on polarization-stabilized dual-Mach-Zehnder interferometer. Opt. Express, 28, 24820-24832(2020).

    [25] Z. S. Sun, K. Liu, J. F. Jiang, T. H. Xu, S. Wang, H. R. Guo, T. G. Liu. High accuracy and real-time positioning using MODWT for long range asymmetric interferometer vibration sensors. J. Lightwave Technol., 39, 2205-2214(2021).

    [26] Y. X. Yan, F. N. Khan, B. Zhou, A. P. T. Lau, C. Lu, C. J. Guo. Forward transmission based ultra-long distributed vibration sensing with wide frequency response. J. Lightwave Technol., 39, 2241-2249(2021).

    [27] P. Healey. Statistics of Rayleigh backscatter from a single-mode fiber. IEEE Trans. Commun. Technol., 35, 210-214(1987).

    [28] Y. L. Lu, T. Zhu, L. Chen, X. Y. Bao. Distributed vibration sensor based on coherent detection of phase-OTDR. J. Lightwave Technol., 28, 3242-3249(2010).

    [29] H. J. Wu, X. R. Liu, Y. Xiao, Y. J. Rao. A dynamic time sequence recognition and knowledge mining method based on the hidden Markov models (HMMs) for pipeline safety monitoring with Φ-OTDR. J. Lightwave Technol., 37, 4991-5000(2019).

    [30] N. J. Lindsey, T. C. Dawe, J. B. Ajo-Franklin. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science, 366, 1103-1107(2019).

    [31] P. Lu, N. Lalam, M. Badar, B. Liu, B. T. Chorpening, M. P. Buric, P. R. Ohodnicki. Distributed optical fiber sensing: review and perspective. Appl. Phys. Rev., 6, 041302(2019).

    [32] F. Walter, D. Gräff, F. Lindner, P. Paitz, M. Köpfli, M. Chmiel, A. Fichtner. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain. Nat. Commun., 11, 2436(2020).

    [33] Y. Y. Yang, Y. Li, T. J. Zhang, Y. Zhou, H. F. Zhang. Early safety warnings for long-distance pipelines: a distributed optical fiber sensor machine learning approach. Proceedings of the AAAI Conference on Artificial Intelligence, 35, 14991-14999(2021).

    [34] S. R. Xie, Q. L. Zou, L. W. Wang, M. Zhang, Y. H. Li, Y. B. Liao. Positioning error prediction theory for dual Mach-Zehnder interferometric vibration sensor. J. Lightwave Technol., 29, 362-368(2011).

    [35] G. Wang, H. W. Si, Z. W. Pang, B. H. Zhang, H. Q. Hao, B. Wang. Noise analysis of the fiber-based vibration detection system. Opt. Express, 29, 5588-5597(2021).

    [36] G. C. Carter. Coherence and time delay estimation. Proc. IEEE, 75, 236-255(1987).

    [37] X. J. Fang. Fiber-optic distributed sensing by a two-loop Sagnac interferometer. Opt. Lett., 21, 444-446(1996).

    [38] P. F. Du, S. Zhang, C. Chen, A. Alphones, W. D. Zhong. Demonstration of a low-complexity indoor visible light positioning system using an enhanced TDOA scheme. IEEE Photonics J., 10, 7905110(2018).

    [39] J. W. Dong, B. Wang, C. Gao, Y. C. Guo, L. J. Wang. Highly accurate fiber transfer delay measurement with large dynamic range. Opt. Express, 24, 1368-1375(2016).

    [40] H. W. Si, B. Wang, J. W. Dong, L. J. Wang. Accurate self-calibrated fiber transfer delay measurement. Rev. Sci. Instrum., 89, 083117(2018).

    [41] Q. Li, S. X. Xu, J. W. Yu, L. J. Yan, Y. M. Huang. An improved method for the position detection of a quadrant detector for free space optical communication. Sensors, 19, 175(2019).

    [42] S. R. Xie, M. Zhang, Y. H. Li, Y. B. Liao. Positioning error reduction technique using spectrum reshaping for distributed fiber interferometric vibration sensor. J. Lightwave Technol., 30, 3520-3524(2012).

    [43] A. Bercy, F. Stefani, O. Lopez, C. Chardonnet, P.-E. Pottie, A. Amy-Klein. Two-way optical frequency comparisons at 5 × 10−21 relative stability over 100-km telecommunication network fibers. Phys. Rev. A, 90, 061802(2014).

    [44] L. Hu, X. Y. Tian, G. L. Wu, J. G. Shen, J. P. Chen. Fundamental limitations of Rayleigh backscattering noise on fiber-based multiple-access optical frequency transfer(2020).

    [45] V. K. Madissetti. Digital Signal Processing Handbook(2010).

    CLP Journals

    [1] Guan Wang, Zhongwang Pang, Bohan Zhang, Fangmin Wang, Yufeng Chen, Hongfei Dai, Bo Wang, Lijun Wang. Time shifting deviation method enhanced laser interferometry: ultrahigh precision localizing of traffic vibration using an urban fiber link: publisher’s note[J]. Photonics Research, 2022, 10(8): 1839

    Guan Wang, Zhongwang Pang, Bohan Zhang, Fangmin Wang, Yufeng Chen, Hongfei Dai, Bo Wang, Lijun Wang. Time shifting deviation method enhanced laser interferometry: ultrahigh precision localizing of traffic vibration using an urban fiber link[J]. Photonics Research, 2022, 10(2): 433
    Download Citation