• Laser & Optoelectronics Progress
  • Vol. 57, Issue 8, 081011 (2020)
Gang Li1、*, Zhenyang Gao1, Xinchun Zhang1, Huaixin Zhao2, and Zhuo Liu3
Author Affiliations
  • 1School of Electronic and Control Engineering, Chang'an University, Xi'an, Shaanxi 710064, China
  • 2Technology Quality Department, Shaanxi Province Railway Group Co., Ltd., Xi'an, Shaanxi 710199, China
  • 3Commission for Discipline Inspection and Supervision, Xi'an Xilan Natural Gas Group Co., Ltd., Xi'an, Shaanxi 710075, China
  • show less
    DOI: 10.3788/LOP57.081011 Cite this Article Set citation alerts
    Gang Li, Zhenyang Gao, Xinchun Zhang, Huaixin Zhao, Zhuo Liu. Improved Global Convolutional Network for Pavement Crack Detection[J]. Laser & Optoelectronics Progress, 2020, 57(8): 081011 Copy Citation Text show less
    References

    [1] Liu Y L[J]. The maintenance technology of cracks in highway asphalt pavement China Highway, 2019, 108-109.

    [2] Wang B, Wang X, Chen F et al. Pavement crack recognition based on aerial image[J]. Acta Optica Sinica, 37, 0810004(2017).

    [3] Yue Y, Wang Y, Duan J L et al. Experimental study on fiber Bragg grating monitoring the crack of CFRP concrete composite arch[J]. Chinese Journal of Lasers, 42, 0805004(2015).

    [4] Liu F F, Xu G A, Yang Y X et al. Novel approach to pavement cracking automatic detection based on segment extending. [C]∥2008 International Symposium on Knowledge Acquisition and Modeling, December 21-22, 2008, Wuhan, China. New York: IEEE, 10453525(2008).

    [5] Kaseko M S, Ritchie S G. A neural network-based methodology for pavement crack detection and classification[J]. Transportation Research Part C: Emerging Technologies, 1, 275-291(1993).

    [6] Dollár P, Zitnick C L. Structured forests for fast edge detection. [C]∥2013 IEEE International Conference on Computer Vision, December 1-8, 2013, Sydney, NSW, Australia. New York: IEEE, 14145062(2013).

    [7] Shi Y, Cui L M, Qi Z Q et al. Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 17, 3434-3445(2016).

    [8] Zou Q, Cao Y, Li Q Q et al. CrackTree: automatic crack detection from pavement images[J]. Pattern Recognition Letters, 33, 227-238(2012).

    [9] Oliveira H, Correia P L. Automatic road crack detection and characterization[J]. IEEE Transactions on Intelligent Transportation Systems, 14, 155-168(2013).

    [10] Nguyen T S, Begot S, Duculty F et al. Free-form anisotropy: a new method for crack detection on pavement surface images. [C]∥2011 18th IEEE International Conference on Image Processing, September 11-14, 2011, Brussels, Belgium. New York: IEEE, 12504420(2011).

    [11] Amhaz R, Chambon S, Idier J et al. Automatic crack detection on two-dimensional pavement images: an algorithm based on minimal path selection[J]. IEEE Transactions on Intelligent Transportation Systems, 17, 2718-2729(2016).

    [12] Li G, Zhao X X, Du K et al. Recognition and evaluation of bridge cracks with modified active contour model and greedy search-based support vector machine[J]. Automation in Construction, 78, 51-61(2017).

    [13] Zhang L, Yang F. Zhang Y M D, et al. Road crack detection using deep convolutional neural network. [C]∥2016 IEEE International Conference on Image Processing (ICIP), September 25-28, 2016, Phoenix, AZ, USA. New York: IEEE, 16521492(2016).

    [14] Schmugge S J, Rice L, Lindberg J et al. Crack segmentation by leveraging multiple frames of varying illumination. [C]∥2017 IEEE Winter Conference on Applications of Computer Vision (WACV), March 24-31, 2017, Santa Rosa, CA, USA. New York: IEEE, 16881695(2017).

    [15] Li L F, Sun R Y. Bridge crack detection algorithm based on image processing under complex background[J]. Laser & Optoelectronics Progress, 56, 061002(2019).

    [16] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 16541111(2016).

    [17] Long J, Shelhamer E, Darrrell T. Fully convolutional networks for semantic segmentation[J]. Computer Science, 12, 3431-3440(2015).

    [18] Krähenbühl P, Koltun V. Efficient inference in fully connected CRFs with gaussian edge potentials. [C]∥Advances in Neural Information Processing Systems 24 (NIPS 2011), December 16-17, 2011, Granada, Spain. New York: Curran Associates., 109-117(2011).

    [19] Zheng S, Jayasumana S, Romera-Paredes B et al. Conditional random fields as recurrent neural networks. [C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 15801852(2015).

    [20] Yang F, Zhang L, Yu S J et al. Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems(2019).

    [21] Eisenbach M, Stricker R, Seichter D et al. How to get pavement distress detection ready for deep learning? A systematic approach. [C]∥2017 International Joint Conference on Neural Networks (IJCNN), May 14-19, 2017, Anchorage, AK, USA. New York: IEEE, 17010772(2017).

    [22] Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2481-2495(2017).

    [23] Chen L C, Papandreou G, Kokkinos I et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848(2018).

    [24] Fan Z, Wu Y, Lu J et al. Automatic pavement crack detection based on structured prediction with the convolutional neural network[J]. Computer-Aided Civil and Infrastructure Engineering, 561, 128-150(2018).

    [25] Yang X C, Li H, Yu Y T et al. Automatic pixel-level crack detection and measurement using fully convolutional network[J]. Computer-Aided Civil and Infrastructure Engineering, 33, 1090-1109(2018).

    [26] Hu Y, Wang P. Skeleton extracting algorithm via optimized discrete λ-medial axis[J]. Journal of Computer-Aided Design & Computer Graphics, 29, 1505-1514(2017).

    [27] Hilditch C J. Comparison of thinning algorithms on a parallel processor[J]. Image Vision Computing, 1, 115-132(1983).

    [28] Zhang T Y, Suen C Y. A fast parallel algorithm for thinning digital patterns[J]. Communications of the ACM, 27, 236-239(1984).

    Gang Li, Zhenyang Gao, Xinchun Zhang, Huaixin Zhao, Zhuo Liu. Improved Global Convolutional Network for Pavement Crack Detection[J]. Laser & Optoelectronics Progress, 2020, 57(8): 081011
    Download Citation