• Photonics Research
  • Vol. 5, Issue 6, B47 (2017)
Yuta Kawashima1, Susumu Shinohara1、*, Satoshi Sunada2, and Takahisa Harayama1
Author Affiliations
  • 1Department of Applied Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
  • 2Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
  • show less
    DOI: 10.1364/PRJ.5.000B47 Cite this Article Set citation alerts
    Yuta Kawashima, Susumu Shinohara, Satoshi Sunada, Takahisa Harayama. Self-adjustment of a nonlinear lasing mode to a pumped area in a two-dimensional microcavity [Invited][J]. Photonics Research, 2017, 5(6): B47 Copy Citation Text show less
    References

    [1] J. U. Nöckel, A. D. Stone. Ray and wave chaos in asymmetric resonant optical cavities. Nature, 385, 45-47(1997).

    [2] K. Vahala, H. G. L. Schwefel, H. E. Tureci, A. D. Stone, R. K. Chang. Progress in asymmetric resonant cavities: Using shape as a design parameter in dielectric microcavity lasers. Optical Microcavities, 415-495(2004).

    [3] T. Harayama, S. Shinohara. Two-dimensional microcavity lasers. Laser Photon. Rev., 5, 247-271(2011).

    [4] H. Cao, J. Wiersig. Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys., 87, 61-111(2015).

    [5] X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, Y.-F. Xiao. Whispering-gallery microcavities with unidirectional laser emission. Laser Photon. Rev., 10, 40-61(2016).

    [6] J. Wiersig, M. Hentschel. Combining directional light output and ultralow loss in deformed microdisks. Phys. Rev. Lett., 100, 033901(2008).

    [7] J. Wiersig, O. Kwon, B. Lee, J. Unterhinninghofen, Q. H. Song, K. An, H. Cao, M. Hentschel, S. Shinohara. Review on unidirectional light emission from ultralow-loss modes in deformed microdisks. Trends in Nano- and Micro-cavities, 109-152(2011).

    [8] N. L. Aung, L. Ge, O. Malik, H. E. Türeci, C. F. Gmachl. Threshold current reduction and directional emission of deformed microdisk lasers via spatially selective electrical pumping. Appl. Phys. Lett., 107, 151106(2015).

    [9] H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, J. Zyss. Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers. J. Opt. Soc. Am. B, 21, 923-934(2004).

    [10] S.-Y. Lee, J.-W. Ryu, T.-Y. Kwon, S. Rim, C.-M. Kim. Scarred resonances and steady probability distribution in a chaotic microcavity. Phys. Rev. A, 72, 061801(2005).

    [11] S. Shinohara, T. Harayama, H. E. Türeci, A. D. Stone. Ray-wave correspondence in the nonlinear description of stadium-cavity lasers. Phys. Rev. A, 74, 033820(2006).

    [12] V. A. Podolskiy, E. E. Narimanov. Chaos-assisted tunneling in dielectric microcavities. Opt. Lett., 30, 474-476(2005).

    [13] S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, E. E. Narimanov. Chaos-assisted directional light emission from microcavity lasers. Phys. Rev. Lett., 104, 163902(2010).

    [14] J. Yang, S.-B. Lee, S. Moon, S.-Y. Lee, S. W. Kim, T. T. A. Dao, J.-H. Lee, K. An. Pump-induced dynamical tunneling in a deformed microcavity laser. Phys. Rev. Lett., 104, 243601(2010).

    [15] T. Harayama, S. Sunada, K. S. Ikeda. Theory of two-dimensional microcavity lasers. Phys. Rev. A, 72, 013803(2005).

    [16] R. Loudon. The Quantum Theory of Light(2000).

    [17] H. E. Türeci, A. D. Stone, B. Collier. Self-consistent multimode lasing theory for complex or random lasing media. Phys. Rev. A, 74, 043822(2006).

    [18] T. E. Tureci, H. G. L. Schwefel, A. D. Stone, E. E. Narimanov. Gaussian-optical approach to stable periodic orbit resonances of partially chaotic dielectric micro-cavities. Opt. Express, 10, 752-776(2002).

    [19] J. Wiersig. Boundary element method for resonances in dielectric microcavities. J. Opt. A, 5, 53-60(2003).

    [20] M. Hentschel, H. Schomerus, R. Schubert. Husimi functions at dielectric interfaces: Inside–outside duality for optical systems and beyond. Europhys. Lett., 62, 636-642(2003).

    [21] T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, T. Aida. Ring and axis mode lasing in quasi-stadium laser diodes with concentric end mirrors. Opt. Lett., 27, 1430-1432(2002).

    [22] G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, N. M. Johnson. Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars. Appl. Phys. Lett., 83, 1710-1712(2003).

    [23] T. Fukushima, T. Harayama. Stadium and quasi-stadium laser diodes. IEEE J. Sel. Top. Quantum Electron., 10, 1039-1051(2004).

    [24] M. Choi, T. Tanaka, T. Fukushima, T. Harayama. Control of directional emission in quasistadium microcavity laser diodes with two electrodes. Appl. Phys. Lett., 88, 211110(2006).

    [25] S. F. Liew, L. Ge, B. Redding, G. S. Solomon, H. Cao. Pump-controlled modal interactions in microdisk lasers. Phys. Rev. A, 91, 043828(2015).

    [26] L. I. Deych. Effects of spatial nonuniformity on laser dynamics. Phys. Rev. Lett., 95, 043902(2005).

    [27] T.-Y. Kwon, S.-Y. Lee, M. S. Kurdoglyan, S. Rim, C.-M. Kim, Y.-J. Park. Lasing modes in a spiral-shaped dielectric microcavity. Opt. Lett., 31, 1250-1252(2006).

    [28] L. Ge, Y. D. Chong, A. D. Stone. Steady-state ab initio laser theory: Generalization and analytic results. Phys. Rev. A, 82, 063824(2010).

    [29] L. Ge, O. Malik, H. E. Türeci. Enhancement of laser power-efficiency by control of spatial hole burning interactions. Nat. Photonics, 8, 871-875(2014).

    [30] L. Ge. Selective excitation of lasing modes by controlling modal interactions. Opt. Express, 23, 30049-30056(2015).

    [31] T. Harayama, T. Fukushima, S. Sunada, K. S. Ikeda. Asymmetric stationary lasing patterns in 2D symmetric microcavities. Phys. Rev. Lett., 91, 073903(2003).

    [32] S. Sunada, T. Harayama, K. S. Ikeda. Nonlinear whispering-gallery modes in a microellipse cavity. Opt. Lett., 29, 718-720(2004).

    [33] S. Sunada, T. Harayama, K. S. Ikeda. Multimode lasing in two-dimensional fully chaotic cavity lasers. Phys. Rev. E, 71, 046209(2005).

    [34] S. Shinohara, S. Sunada, T. Harayama, K. S. Ikeda. Mode expansion description of stadium-cavity laser dynamics. Phys. Rev. E, 71, 036203(2005).

    CLP Journals

    [1] Li Ge, Liang Feng, Harald G. L. Schwefel. Optical microcavities: new understandings and developments[J]. Photonics Research, 2017, 5(6): OM1

    Yuta Kawashima, Susumu Shinohara, Satoshi Sunada, Takahisa Harayama. Self-adjustment of a nonlinear lasing mode to a pumped area in a two-dimensional microcavity [Invited][J]. Photonics Research, 2017, 5(6): B47
    Download Citation