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We numerically performed wave dynamical simulations based on the Maxwell–Bloch (MB) model for a
quadrupole-deformed microcavity laser with spatially selective pumping. We demonstrate the appearance of
an asymmetric lasing mode whose spatial pattern violates both the x- and y-axes mirror symmetries of the cavity.
Dynamical simulations revealed that a lasing mode consisting of a clockwise or counterclockwise rotating-wave
component is a stable stationary solution of the MB model. From the results of a passive-cavity mode analysis, we
interpret these asymmetric rotating-wave lasing modes by the locking of four nearly degenerate passive-cavity
modes. For comparison, we carried out simulations for a uniform pumping case and found a different locking
rule for the nearly degenerate modes. Our results demonstrate a nonlinear dynamical mechanism for the
formation of a lasing mode that adjusts its pattern to a pumped area. © 2017 Chinese Laser Press
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1. INTRODUCTION

Since a close analogy between optical microcavities and open
dynamical billiards was pointed out [1], intensive investigations
have been carried out for ray-chaotic optical cavities, whose typ-
ical shape is a deformation of a circle [2–5]. Combination of
total internal reflection and ray chaos is expected to achieve a
low-threshold and directional-emission microcavity laser [6,7].

Recently, Aung et al. experimentally demonstrated that
threshold current reduction and directional emission can be
simultaneously achieved by forming an appropriate selective
pumping area in the quadrupole-deformed microcavity laser
[8]. In this cavity, there are resonant modes that are localized
along twin periodic orbits with the shape of the double triangle
consisting of upward-pointing and downward-pointing trian-
gles [see Fig. 1(a)]. In the experiments reported in Ref. [8],
the selective pumping area was formed along one of the two
triangle orbits, and directional emission was observed. The
assumption of the existence of a lasing mode that localizes
along the sole triangle orbit plays a key role in explaining the
experimental data in Ref. [8]. With this assumption, the
directional emission can be explained by the mechanism of

unstable-manifold-guided emission [9–11] via dynamical tun-
neling [12–14], and the threshold current reduction can be
attributed to the fact that the triangle orbit is confined by total
internal reflection. However, because this lasing mode violates
the mirror symmetry of the quadrupole cavity, it cannot be
simply regarded as a passive-cavity mode.

A theoretical explanation is needed on how selective pump-
ing leads to the formation of the asymmetric lasing mode,
which does not have a direct counterpart in the passive-cavity
modes. It is the purpose of this paper to numerically demon-
strate the existence of the asymmetric lasing mode and theo-
retically reveal its appearance mechanism. We perform wave
dynamical simulations based on the Maxwell–Bloch (MB)
model [3,15], which fully takes into account the nonlinear in-
teraction between the light field and a gain medium described
by a two-level atom system (i.e., the optical Bloch equations
[16]). We numerically reproduce the appearance of the asym-
metric lasing mode when the selective pumping condition is
adopted, and explain it by the locking of four nearly degenerate
modes associated with the double-triangle orbits. Dynamical
simulations reveal that clockwise (CW) and counterclockwise
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(CCW) rotating-wave states are stable stationary solutions of
the MB model. For comparison, we perform simulations for
a uniform pumping case, and found a different locking rule
for the nearly degenerate modes.

2. MODEL

A. MB Model
The MB model is a set of wave dynamical equations describing
the nonlinear interaction between the light field and a gain
medium [3,15,17]. For transverse-magnetic (TM) polarization,
it is given by
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where Ez�x; y�, Pz�x; y�, and W �x; y� are the electric field,
polarization, and population inversion, respectively, n �
n�x; y� is the refractive index, and ϵ � n2 is the permittivity.
The constant β is introduced phenomenologically to describe
the background uniform absorption, ρ�x; y� is the microscopic
polarization, N the atomic number density, κ the coupling
strength for the light–matter interaction, ω0 the transition
frequency of the two-level gain medium, and W∞�x; y� the
pumping strength parameter. γ⊥ and γ∥ are the transversal
and longitudinal relaxation rates, respectively. In the study
reported in this paper, we numerically solve Eq. (1) by the
finite-difference time-domain method and Eqs. (3) and (4) by
the Euler method.

B. Quadrupole-Deformed Cavity
In the MB model, the effect of the cavity shape appears through
the refractive index function n�x; y�. We fix the cavity shape
to be the quadrupole-deformed cavity defined in the polar
coordinates �r; θ� by

r�θ� � r0�1� ε cos�2θ��; (5)

where r0 is the size parameter, and the deformation parameter
ε is fixed at 0.09 throughout the paper. The refractive indices
inside and outside the cavity are fixed at nin � 3.3 (GaAs) and

nout � 1 (air), respectively. In this paper, we focus our attention
on the periodic orbits with the shape of the double triangle,
consisting of upward-pointing and downward-pointing stable
triangle orbits as shown in Fig. 1(a).

In the experiments by Aung et al. [8], the effective refractive
index of the cavity is 3.67, and the emitted light is transverse-
electric polarized, which are different from our setting.
However, we believe that our claims presented in this paper
are qualitatively applicable to the microcavity laser studied
by Aung et al.

C. Resonant Modes for the Passive Cavity
The resonant modes for the passive cavity are the solutions of
Eq. (1) with Pz ≡ 0 and β � 0. That is, they are the eigenso-
lutions of the following Helmholtz equation:�

∇2 � n2ω2

c2

�
ψ�x; y� � 0; (6)

where Ez � Re�ψ�x; y� exp�−iωt��. Because we assume TM
polarization, we impose that both the wave function and its
normal derivative are continuous at the cavity boundary.
The eigenfrequency ω takes a complex value with a negative
imaginary part, because Eq. (6) is solved with the outgoing
wave condition at infinity, i.e., ψ ∝ eiωr∕c∕

ffiffi
r

p
as r → ∞.

Because the quadrupole cavity has mirror symmetries with re-
spect to both the x and y axes, the resonant modes are divided
into four symmetry classes, i.e.,

ψ ab�−x; y� � aψab�x; y�; (7)

ψab�x; −y� � bψ ab�x; y�; (8)

where a; b ∈ f�; −g are parity indices.
For the double-triangle orbits, the associated resonant

modes can be shown to have fourfold near degeneracy by a
symmetry argument [18]. Figure 2 shows an example of the
four nearly degenerate modes with Reω∕ω0 ≈ 1, where the
even–even (ee) and odd–odd (oo) modes constitute a closer pair,
whereas the even–odd (eo) and odd–even (oe) modes form
another closer pair. Here we used the scaled eigenfrequency
Reω∕ω0, where ω0 � 2.2 × 1015 is the transition frequency
of the two-level gain medium tuned to fit the frequencies of
the nearly degenerate modes. We numerically obtained the
eigenfrequencies and eigenfunctions by the boundary element
method [19].

Because of the relatively small wavenumbers, the intensity
localization along the triangle orbits is less obvious in Fig. 2.
However, by investigating the Husimi distributions [20] of
the wave functions, we could identify the intensity localization
along the double-triangle orbits. Figure 3 shows the upper-half
phase space for the ray dynamics [2–4], where the phase space is
spanned by �s; sin ϕ� with s and ϕ being the arc length along
the cavity boundary and the incident angle for a ray orbit,
respectively. In Fig. 3, the islands of stability corresponding
to the upward-pointing and downward-pointing triangle orbits
are shown by red and green points, respectively. In Fig. 3, we
also superpose the Husimi distribution for the resonant mode
eo, whose wave function pattern is shown in Fig. 2(b). In the
Husimi distribution, we can see high intensities near the islands
of stability. We also checked that modes similar to those in

Fig. 1. (a) Double-triangle orbits in the quadrupole-deformed cav-
ity. (b) Spatial selective pumping (yellow region) along the upward-
pointing triangle orbit (red lines).
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Fig. 2 appear regularly in the ω plane with a constant
modal spacing corresponding to the optical path length of the
triangle orbit.

As can be seen in Fig. 3, the double-triangle orbits are
located above the critical line for total internal reflection.

The emission of a well-confined mode in a ray-chaotic cavity
can be explained by the chaos-assisted emission (CAE) mecha-
nism [12–14]. As Aung et al. have shown [8], the CAE mecha-
nism for the quadrupole cavity results in strong emissions at the
far-field angles θ ≈ 50°, 130°, 230°, and 310°.

Figure 4 shows the eigenfrequency distribution of the res-
onant modes in the complex ω∕ω0 plane, where Imω∕ω0 rep-
resents the decay rate of the mode. The modes encircled by the
green circle are the four nearly degenerate modes associated
with the double-triangle orbits (the ee and oo modes are almost
on top each other, and so are the eo and oe modes). The longi-
tudinal modal spacing for the double-triangle modes is
estimated to be �ΔReω�∕ω0 ≈ 0.0244 from the optical path
length of the triangle orbit. For the numerical simulations re-
ported in this paper, we only consider the cases where a single
set of the four nearly degenerate modes has positive gain.

In the eigenfrequency distribution, we can see that some
modes are aligned at Im�ω∕ω0� ≈ −0.003. This decay rate
value was found to agree with that estimated by the Fresnel-
coefficient-weighted ray simulation [3] for chaotic orbits
located near the critical line for total internal reflection in
the phase space. Thus, these modes are associated with the
chaotic orbits.

3. NUMERICAL RESULTS OF THE MB MODEL
SIMULATION

A. Positive Linear Gain Condition for a Resonant
Mode
The condition for a resonant mode to have positive linear gain
is derived in the limit of a single-mode approximation ignoring
modal couplings [15]:

2πN κ2ℏhW∞i
n2

γ⊥ Reωs

�Reωs − ω0�2 � γ2⊥
> −Imωs � β; (9)

with

Fig. 2. Intensity distributions of the resonant modes for a passive
quadrupole-deformed cavity with refractive index 3.3. The modes are
four nearly degenerate modes associated with the double-triangle
orbits. The double-triangle orbits (red and green lines) are superposed,
and the intensities outside the cavity are plotted in log scale.
(a) Even–even mode with scaled frequency Reω∕ω0 � 1.0008278.
(b) Even–odd mode with Reω∕ω0 � 0.999085. (c) Odd–even
mode with Reω∕ω0 � 0.999075. (d) Odd–odd mode with
Reω∕ω0 � 1.0008277.

Fig. 3. Phase space of the ray dynamics for the quadrupole-
deformed cavity. The islands of stability corresponding to the
upward-pointing and downward-pointing triangle orbits are indicated
by red and green points, respectively. The critical line for total internal
reflection is indicated by a line at sin ϕ � 1∕3.3. Husimi distribution
for the eo mode shown in Fig. 2(b) is superposed.

Fig. 4. Distribution of the complex eigenfrequencies ω scaled by
ω0, where ω0 is the gain center parameter. The four nearly degenerate
modes associated with the double-triangle orbits are encircled by a
green circle (the ee and oo modes are almost on top of each other,
and so are the eo and oe modes). The modes indicated by filled circles
(•) have positive linear gain [i.e., satisfying Eq. (9)] for the selective
pumping with W∞ � 1.0 × 10−3, whereas those indicated by crosses
(×) do not satisfy Eq. (9).
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hW∞i �
W∞

R
D dxdyjψ�x; y�j2Θ�x; y�R
D dxdyjψ�x; y�j2 ; (10)

where ωs �s ∈ N� is the eigenfrequency of a passive-cavity
mode, D denotes the area inside the cavity, and Θ�x; y� repre-
sents a characteristic function that takes 1 inside the pumped
area (i.e., the area along the upward-pointing triangle orbit) and
takes 0 otherwise. We note that this condition depends on the
wave function ψ�x; y� through Eq. (10), and that the gain
center is controlled by the parameter ω0. This condition is use-
ful for estimating which passive-cavity modes have the potential
to contribute to a lasing state for given gain center ω0 and
pumping strength W∞.

For the simulations reported in this paper, we fixed
the parameter values as follows: r0 � 2.027 μm, β � 8.8 ×
1012 s−1, ω0 � 2.2 × 1015 s−1, γ⊥ � 13.2 × 1012 s−1, γ∥ �
6.6 × 1012 s−1, and N κ2ℏ � 0.55 J s−1 cm−3. As mentioned
in Section 2.C, the value of ω0 is chosen so that the double-
triangle modes become the nearest to the gain center. The
pumping strength parameter W∞ is dimensionless, and it is
varied in the simulations.

B. Selective Pumping Simulations
Selective pumping in two-dimensional microcavity lasers has
been experimentally demonstrated in Refs. [8,13,21–25],
and theoretically studied in Refs. [26–30]. The study reported
in this paper numerically demonstrates a nonlinear dynamical
mechanism for the formation of a lasing mode that adjusts its
pattern to a pumped area.

Figures 5(b) and 6 show the results of the selective pumping
simulation when the pumping strength is set at W∞ �
1.0 × 10−3, and the initial distribution of the electric field
Ez is given by a Gaussian distribution, as shown in Fig. 5(a).
For selective pumping with W∞ � 1.0 × 10−3, the number of
the modes that satisfy the positive linear gain condition,
Eq. (9), turned out to be 10, including the four nearly degen-
erate modes. In Fig. 4, these 10 modes are indicated by filled
circles (•).

Figure 6(a) shows the time evolution of the total light in-
tensity inside the cavity, where we can observe the formation of
a stationary lasing state after a transient. Figure 6(b) shows
the power spectrum of the time series of the electric field at

a certain point in the cavity taken in the stationary regime.
From this power spectral data, we can confirm the single-mode
lasing. The corresponding time-averaged electric field intensity
pattern is shown in Fig. 5(b), where the average was taken over
the time interval of T ≈ 4 × 103 × �2π∕ω0�. This pattern
clearly shows that the stationary lasing state is a CW rotating
wave, which violates mirror symmetries with respect to both
the x and y axes. Because the MB system with the triangle-orbit
pumping pattern is invariant under the transformation x → −x,
a CCW rotating wave [obtained by reversing the x axis in
Fig. 5(b)] is also a solution of the MB model.

C. Interpretation of the Stationary Rotating-Wave
States of the MB Model by the Resonant Modes
It has been numerically demonstrated for the Schrödinger–
Bloch (SB) model that the frequencies of nearly degenerate
modes can be locked as a result of a nonlinear modal interac-
tion, and the locking phenomenon results in the appearance of
asymmetric emission patterns [31–34]. The SB model is an
approximation of the MB model, where the slowly varying
envelope approximation of the field variables is adopted for
reducing a numerical computation cost.

The power spectrum in Fig. 6(b) shows a single-mode
lasing, under the condition of preferential excitation of the four

Fig. 5. Electric field intensity distributions. (a) An initial condition
for the MB model simulation. (b) Time-averaged pattern of the
stationary lasing state of the MB model for the selective pumping case
with W∞ � 1.0 × 10−3. The intensity outside the cavity is plotted in
log scale. The boundary of the pumped area is indicated by yellow
lines.

Fig. 6. Results of the MB model simulation for the selective pump-
ing case with W∞ � 1.0 × 10−3. (a) Time evolution of the total
light intensity inside the cavity. (b) Power spectrum of the electric field
for the stationary lasing regime. The peak frequency is around
ω∕ω0 � 0.9988.
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nearly degenerate modes. This result suggests that the locking
occurs for these nearly degenerate modes. For confirming this,
we computed the superposition of the resonant-mode eigen-
functions. First, we found that intensity localization along
the upward-pointing triangle orbit can be reproduced by taking
the superpositions of two different parity modes as follows:

ξ ≔ ψ ee � ψ eo; (11)

η ≔ ψ oe � ψ oo: (12)

We plot the intensity distributions of ξ�x; y� and η�x; y� in
Figs. 7(a) and 7(b), respectively. In the same manner, the in-
tensity localization along the downward-pointing triangle orbit
can be obtained by ξ 0 ≔ ψ ee − ψ eo and η 0 ≔ ψ oe − ψ oo.
Secondly, we found that the CW and CCW rotating-wave
states can be reproduced by taking the superpositions of
ξ�x; y� and η�x; y� as follows:

ΨCW ≔ ξ� iη � �ψ ee � ψ eo� � i�ψ oe � ψ oo�; (13)

ΨCCW ≔ ξ − iη � �ψ ee � ψ eo� − i�ψ oe � ψ oo�: (14)

The intensity distributions of ΨCW�x; y� and ΨCCW�x; y�
are plotted in Figs. 7(c) and 7(d), respectively. Comparing
Figs. 5(b) and 7(c), we can confirm that the CW rotating-
wave state of the MB model can be very well reproduced by
the superposition of the four nearly degenerate double-triangle
modes.

By performing simulations for various initial conditions and
pumping strengths, we numerically found that the CW and
CCW rotating-wave states are stable solutions of the MB
model. Because our selective pumping pattern is symmetric
with respect to the y axis, when we prepare the initial field dis-
tributions symmetric with respect to the y axis, we obtained

standing-wave stationary states that obey the same symmetry.
We checked that these standing-wave stationary states can be
reproduced by the resonant-mode superpositions ξ and η
shown in Figs. 7(a) and 7(b). However, we numerically found
that these standing-wave states are dynamically unstable
stationary solutions [31].

For selective pumping, we found the lasing threshold to be
W∞ ≈ 2.8 × 10−4. Just above the threshold, we already ob-
served the rotating-wave state localized along the triangle
orbit. This appears to be reasonable, because the lasing mode
needs to adjust its pattern along the pumped area so that it can
be excited.

The fact that the lasing mode at the threshold already local-
izes along the triangle orbit yields the discrepancy between the
actual lasing threshold and the positive linear gain condition
Eq. (9). In the estimation of hW∞i by Eq. (10), the reso-
nant-mode wave function ψ�x; y� does not localize only along
the upward-pointing triangle orbit. For the resonant modes
ψ ee , ψ eo, ψ oe , and ψ oo, Eq. (9) predicts the positive linear gain
thresholds to beW∞ � 3.14 × 10−4, 3.32 × 10−4, 3.40 × 10−4,
and 3.12 × 10−4, respectively, which are all larger than the ac-
tual lasing threshold. When we used ξ�x; y� 	 iη�x; y� instead
of ψ�x; y� for the estimation of hW∞i by Eq. (10), we found
that the positive linear gain threshold is around 2.4 × 10−4,
which is closer to the actual lasing threshold. For a more ac-
curate prediction of the lasing threshold, incorporating the ef-
fect of the polarization term (thus the effect of selective
pumping) in the linear Helmholtz equation [26,28–30] is ex-
pected to be effective, which is, however, beyond the scope of
this paper.

D. Uniform Pumping Simulation
To compare with the selective pumping case, we carried out
simulations when the cavity is uniformly pumped. We
used the same parameter values as in the selective pumping
case, except for the pumping strength, which was set at
W∞ � 3.0 × 10−4. For this W∞ value, the number of the
modes satisfying the positive linear gain condition, Eq. (9),
turned out to be 11, including the four nearly degenerate
double-triangle modes.

Figures 8 and 9 show the results of the MB model simula-
tion with uniform pumping. Figures 8(a) and 8(b), respectively,
show the time evolution of the total light intensity inside the
cavity and the power spectrum of the electric field for the sta-
tionary lasing regime. In the spectral data, we can identify two
dominant peaks at ω∕ω0 � 0.9990 and ω∕ω0 � 1.0012 and
also observe their beat oscillation in the stationary regime of the
time-series data (we note that the ratio of the peak heights de-
pends on the position where the time-series data are acquired).
These data suggest that the stationary state consists mainly of
the two modes for W∞ � 3.0 × 10−4. For higher pumping
strengths (i.e., W∞ ≲ 1.0 × 10−1), we did not observe the
tendency for the two modes to be locked.

We show in Fig. 9 the time-averaged electric field intensity
pattern for the stationary lasing regime, where we can see a CW
rotating-wave state different from the one for the selective
pumping case. By investigating the superposition of the
resonant-mode wave functions, we found that the pattern in
Fig. 9 can be reproduced by ψ eo � iψ oe and ψ ee � iψ oo.

Fig. 7. Intensity distributions of the superpositions of the resonant-
mode wave functions. The triangle orbit is indicated by red lines, and
the intensities outside the cavities are plotted in log scale. (a) ξ �
ψ ee � ψ eo. (b) η � ψ oe � ψ oo. (c) ΨCW � ξ� iη � �ψ ee � ψ eo� �
i�ψ oe � ψ oo�. (d) ΨCCW � ξ− iη��ψ ee�ψ eo�− i�ψ oe�ψ oo�.
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Their patterns are shown in Figs. 10(a) and 10(b), both of
which show CW rotating-wave patterns. We note that the
eo and oe modes have very close eigenfrequencies, and so do
the ee and oo modes (see the caption of Fig. 2 for their eigen-
frequencies). The scaled eigenfrequency Reω∕ω0 of the former
pair is around 0.99908, whereas that for the latter is around
1.000828. These values closely correspond to the peak posi-
tions in the spectral data, which provides a strong support

for our interpretation that each of the two lasing modes is
the locked state of a nearly degenerate pair.

For uniform pumping, we found the lasing threshold to be
W∞ ≈ 2.0 × 10−4, which is smaller than the threshold for se-
lective pumping. This result seems to be natural, because the
lasing modes are different between the two cases, and for se-
lective pumping, the double-triangle modes are partially
pumped.

4. CONCLUSIONS

We numerically demonstrated the lasing of a triangle orbit
mode in the quadrupole-deformed microcavity laser with spa-
tial selective pumping along the periodic orbit. We used the
MB model to describe the nonlinear interaction between the
light field and a gain medium. The nonlinear interaction is es-
sential for the existence of the triangle orbit lasing mode, as
there is no corresponding resonant mode for the passive cavity
because of the x- and y-axes mirror symmetries of the quadru-
pole cavity. By a passive-cavity mode analysis, we concluded
that the asymmetric lasing mode can be interpreted as the
locked state of the four nearly degenerate modes associated with
the double-triangle orbits. In view of our theoretical results, the
experimental study by Aung et al. [8] is considered to be a
very nice illustration of the nonlinear dynamical effect on
the formation of asymmetric lasing modes. Although our re-
sults presented here are for γ⊥ ≈ γ∥, we numerically confirmed
that the locking phenomena of the four nearly degenerate
modes were similarly observed for γ⊥ ≫ γ∥ (e.g., γ⊥ � 10−2

and γ∥ � 10−5).
We numerically confirmed that the CW and CCW

rotating-wave triangle orbit modes are stable solutions for the
MB model, whereas standing-wave ones are unstable. It would
be an interesting future problem to examine if a CW or CCW
rotating-wave stationary state can be obtained even when
multiple longitudinal modes are involved in lasing.

Another open issue is the detailed theoretical mechanism for
the nonlinear interaction of the four different parity resonant
modes. Our comparison between the selective and uniform
pumping cases revealed that the modal interaction mechanism
does depend on the pumping pattern. Elucidating its mecha-
nism would be useful for better controlling lasing modes
through selective pumping.

Fig. 8. Results of the MB model simulation for the uniform pump-
ing case with W∞ � 3.0 × 10−4. (a) Time evolution of the total light
intensity inside the cavity. (b) Power spectrum of the electric field for
the stationary lasing regime. The frequencies of the primary and sec-
ondary peaks are ω∕ω0 ≈ 0.9990 and ω∕ω0 ≈ 1.0012, respectively.

Fig. 9. Time-averaged pattern of the stationary lasing state of the
MB model for the uniform pumping case with W∞ � 3.0 × 10−4.
The intensity outside the cavity is plotted in log scale.

Fig. 10. Intensity distribution of the superpositions of the
resonant-mode wave functions. (a) ψ eo � iψ oe . (b) ψ ee � iψ oo. The
intensities outside the cavity are plotted in log scale.
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Regarding device optimization for threshold current reduc-
tion by selective pumping, it might be effective to adopt an
active–passive structure, where the non-pumped cavity area is
made of a passive material so as to suppress material absorption.
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