• Photonics Research
  • Vol. 9, Issue 2, 229 (2021)
Tingting Zeng1、2, Meiping Zhu1、2、3、*, Yingjie Chai4, Jingping Li1, and Jianda Shao1、2、3、5、6
Author Affiliations
  • 1Laboratory of Thin Film Optics, Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • 4CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USA
  • 5CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
  • 6e-mail: jdshao@siom.ac.cn
  • show less
    DOI: 10.1364/PRJ.411372 Cite this Article Set citation alerts
    Tingting Zeng, Meiping Zhu, Yingjie Chai, Jingping Li, Jianda Shao. Dichroic laser mirrors with mixture layers and sandwich-like-structure interfaces[J]. Photonics Research, 2021, 9(2): 229 Copy Citation Text show less
    References

    [1] L. Ji, X. Zhao, D. Liu, Y. Gao, Y. Cui, D. Rao, W. Fang, F. Li, H. Shi, J. Liu, X. Li, L. Xia, T. Wang, J. Liu, P. Du, X. Sun, W. Ma, Z. Sui, X. Chen. High-efficiency second-harmonic generation of low-temporal-coherent light pulse. Opt. Lett., 44, 4359-4362(2019).

    [2] H. Jiao, X. Cheng, G. Bao, J. Han, J. Zhang, Z. Wang, M. Trubetskov, A. V. Tikhonravov. Study of HfO2/SiO2 dichroic laser mirrors with refractive index inhomogeneity. Appl. Opt., 53, 56-61(2014).

    [3] F. Chen, J. Ma, C. Wei, R. Zhu, W. Zhou, Q. Yuan, S. Pan, J. Zhang, Y. Wen, J. Dou. 10  kW-level spectral beam combination of two high power broad-linewidth fiber lasers by means of edge filters. Opt. Express, 25, 32783-32791(2017).

    [4] M. L. Grilli, F. Menchini, A. Piegari, D. Alderighi, G. Toci, M. Vannini. Al2O3/SiO2 and HfO2/SiO2 dichroic mirrors for UV solid-state lasers. Thin Solid Films, 517, 1731-1735(2009).

    [5] M. L. Spaeth, P. J. Wegner, T. I. Suratwala, M. C. Nostrand, J. D. Bude, A. D. Conder, J. A. Folta, J. E. Heebner, L. M. Kegelmeyer, B. J. MacGowan, D. C. Mason, M. J. Matthews, P. K. Whitman. Optics recycle loop strategy for NIF operations above UV laser-induced damage threshold. Fusion Sci. Technol., 69, 265-294(2016).

    [6] A. Jeandet, A. Borot, K. Nakamura, S. W. Jolly, A. J. Gonsalves, C. Tóth, H.-S. Mao, W. P. Leemans, F. Quéré. Spatio-temporal structure of a petawatt femtosecond laser beam. J. Phys. Photon., 1, 035001(2019).

    [7] C. Jauregui, J. Limpert, A. Tünnermann. High-power fibre lasers. Nat. Photonics, 7, 861-867(2013).

    [8] L. Li, X. Yang, L. Zhou, W. Xie, Y. Wang, Y. Shen, Y. Yang, W. Yang, W. Wang, Z. Lv, X. Duan, M. Chen. Active/passive Q-switching operation of 2 μm Tm, Ho:YAP laser with an acousto-optical Q-switch/MoS2 saturable absorber mirror. Photon. Res., 6, 614-619(2018).

    [9] X. Liu, K. Yang, S. Zhao, T. Li, W. Qiao, H. Zhang, B. Zhang, J. Bian, L. Zheng, L. Su, J. Xu. High-Power passively Q-switched 2  μm all-solid-state laser based on a Bi2Te3 saturable absorber. Photon. Res., 5, 461-466(2017).

    [10] M. L. Davenport, S. Liu, J. E. Bowers. Integrated heterogeneous silicon/III–V mode-locked lasers. Photon. Res., 6, 468-478(2018).

    [11] S. Niu, J. Liu, F. Cheng, H. Wang, J. Zhang, N. Zhuo, S. Zhai, L. Wang, S. Liu, F. Liu, Z. Wang, X. Wang, Z. Wei. 14  μm quantum cascade lasers based on diagonal transition and nonresonant extraction. Photon. Res., 7, 1244-1248(2019).

    [12] X. Cheng, J. Zhang, T. Ding, Z. Wei, H. Li, Z. Wang. The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses. Light Sci. Appl., 2, e80(2013).

    [13] J. Liu, W. Zhang, H. Cui, J. Sun, H. Li, K. Yi, M. Zhu. Study on high-reflective coatings of different designs at 532  nm. Chin. Opt. Lett., 12, 083101(2014).

    [14] M. Zhan, Y. Zhao, G. Tian, H. He, J. Shao, Z. Fan. Stress, absorptance and laser-induced damage threshold properties of 355-nm HR coatings. Appl. Phys. B, 80, 1007-1010(2005).

    [15] S. Malobabic, M. Jupé, D. Ristau. Spatial separation effects in a guiding procedure in a modified ion-beam-sputtering process. Light Sci. Appl., 5, e16044(2016).

    [16] B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, R. Drazdys. Femtosecond laser damage resistance of oxide and mixture oxide optical coatings. Opt. Lett., 37, 1478-1480(2012).

    [17] X. Fu, A. Melnikaitis, L. Gallais, S. Kiáčas, R. Drazdys, V. Sirutkaitis, M. Commandré. Investigation of the distribution of laser damage precursors at 1064  nm, 12  ns on niobia-silica and zirconia-silica mixtures. Opt. Express, 20, 26089-26098(2012).

    [18] M. Zhu, N. Xu, B. Roshanzadeh, S. T. P. Boyd, W. Rudolph, Y. Chai, J. Shao. Nanolaminate-based design for UV laser mirror coatings. Light Sci. Appl., 9, 20(2020).

    [19] K. Craig, J. Steinlechner, P. G. Murray, A. S. Bell, R. Birney, K. Haughian, J. Hough, I. Maclaren, S. Penn, S. Reid, R. Robie, S. Rowan, I. W. Martin. Mirror coating solution for the cryogenic Einstein telescope. Phys. Rev. Lett., 122, 231102(2019).

    [20] J. Steinlechner, I. W. Martin, A. S. Bell, J. Hough, M. Fletcher, P. G. Murray, R. Robie, S. Rowan, R. Schnabel. Silicon-based optical mirror coatings for ultrahigh precision metrology and sensing. Phys. Rev. Lett., 120, 263602(2018).

    [21] X. Cheng, S. Dong, S. Zhi, S. Paschel, I. Balasa, D. Ristau, Z. Wang. Waterproof coatings for high-power laser cavities. Light Sci. Appl., 8, 12(2019).

    [22] N. Xu, M. Zhu, Y. Chai, B. Roshanzaden, S. T. P. Boyd, W. Rudolph, Y. Zhao, R. Chen, J. Shao. Laser resistance dependence of interface for high-reflective coatings studied by capacitance-voltage and absorption measurement. Opt. Lett., 43, 4538-4541(2018).

    [23] H. Xing, M. Zhu, Y. Chai, K. Yi, J. Sun, Y. Cui, J. Shao. Improving laser damage resistance of 355  nm high-reflective coatings by co-evaporated interfaces. Opt. Lett., 41, 1253-1256(2016).

    [24] J. Tauc, R. Grigorovici, A. Vancu. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi, 15, 627-637(1966).

    [25] H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, M. Commandré. Investigation of nanoprecursors threshold distribution in laser-damage testing. Opt. Commun., 256, 184-189(2005).

    [26] Y. Xu, M. R. Abdulameer, L. A. Emmert, T. Day, D. Patel, C. S. Menoni, W. Rudolph. Comparison of defects responsible for nanosecond laser-induced damage and ablation in common high index optical coatings. Opt. Eng., 56, 011019(2017).

    [27] P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, L. L. Wong. Fracture-Induced subbandgap absorption as a precursor to optical damage on fused silica surfaces. Opt. Lett., 35, 2702-2704(2010).

    [28] B. Bertussi, P. Cormont, S. Palmier, P. Legros, J.-L. Rullier. Initiation of laser-induced damage sites in fused silica optical components. Opt. Express, 17, 11469-11479(2009).

    [29] L. Sun, J. Huang, H. Liu, X. Ye, J. Wu, X. Jiang, L. Yang, W. Zheng, W. Wu. Combination of reaction ion etching and dynamic chemical etching for improving laser damage resistance of fused silica optical surfaces. Opt. Lett., 41, 4464-4467(2016).

    [30] K. Wang, B. Ma, J. Han, H. Jiao, X. Cheng, Z. Wang. Morphological and damage growth characteristics of shell-type damage of fused silica optics induced by ultraviolet laser pulses. Appl. Opt., 58, 8882-8888(2019).

    [31] Q. Wu. Extraction of extinction coefficient of weak absorbing thin films form special absorption. J. Phys. D, 22, 1384-1385(1989).

    Tingting Zeng, Meiping Zhu, Yingjie Chai, Jingping Li, Jianda Shao. Dichroic laser mirrors with mixture layers and sandwich-like-structure interfaces[J]. Photonics Research, 2021, 9(2): 229
    Download Citation