• Photonics Research
  • Vol. 9, Issue 2, 229 (2021)
Tingting Zeng1、2, Meiping Zhu1、2、3、*, Yingjie Chai4, Jingping Li1, and Jianda Shao1、2、3、5、6
Author Affiliations
  • 1Laboratory of Thin Film Optics, Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • 4CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USA
  • 5CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
  • 6e-mail: jdshao@siom.ac.cn
  • show less
    DOI: 10.1364/PRJ.411372 Cite this Article Set citation alerts
    Tingting Zeng, Meiping Zhu, Yingjie Chai, Jingping Li, Jianda Shao. Dichroic laser mirrors with mixture layers and sandwich-like-structure interfaces[J]. Photonics Research, 2021, 9(2): 229 Copy Citation Text show less

    Abstract

    The requirements for dichroic laser mirrors continue to increase with the development of laser technology. The challenge of a dichroic laser mirror coating is to simultaneously obtain spectral performance with significantly different reflection or transmission properties as well as a high laser-induced damage threshold (LIDT) at two different wavelengths. Traditional dichroic laser mirrors composed of alternating high- and low-refractive-index pure materials often has difficulty achieving excellent spectral performance and high LIDTs at two wavelengths simultaneously. We propose to use a new design with mixture layers and sandwich-like-structure interfaces to meet the challenging requirements. An Al2O3-HfO2 mixture-based dichroic laser mirror, which can be used as a harmonic separator in a fusion-class laser or a pump/signal beam separator in a petawatt-class Ti-sapphire laser system, is experimentally demonstrated using e-beam deposition. The mixture-based dichroic mirror coating shows good spectral performance, fine mechanical property, low absorption, and high LIDT. For the s-polarized 7.7 ns pulses at a wavelength of 532 nm and the p-polarized 12 ns pulses at a wavelength of 1064 nm, the LIDTs are almost doubled. The excellent performance of this new design strategy with mixture layers and sandwich-like-structure interfaces suggests its wide applicability in high-performance laser coating.
    1+AT=exp(4πkd/λ),

    View in Article

    Tingting Zeng, Meiping Zhu, Yingjie Chai, Jingping Li, Jianda Shao. Dichroic laser mirrors with mixture layers and sandwich-like-structure interfaces[J]. Photonics Research, 2021, 9(2): 229
    Download Citation