• Laser & Optoelectronics Progress
  • Vol. 58, Issue 15, 1516007 (2021)
Zenghua Xu1、3、4, Shixun Dai1、3、4、*, Changgui Lin1、3、4, and Zhongchao Wu2
Author Affiliations
  • 1Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo , Zhejiang 315211, China
  • 2The 26th Research Institute of China Electronics Technology Group Corporation, Chongqing 400060, China
  • 3Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo , Zhejiang 315211, China
  • 4Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo , Zhejiang 315211, China
  • show less
    DOI: 10.3788/LOP202158.1516007 Cite this Article Set citation alerts
    Zenghua Xu, Shixun Dai, Changgui Lin, Zhongchao Wu. Research Progress of Acousto-Optic Crystals, Glass Materials and Modulators[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516007 Copy Citation Text show less
    References

    [1] Brillouin L. Diffusion de la lumière et des rayons X par un corps transparent homogène: influence de l’agitation thermique[J]. Annales De Physique, 9, 88-122(1922).

    [2] Debye P, Sears F W. On the scattering of light by supersonic waves[J]. Proceedings of the National Academy of Sciences of the United States of America, 18, 409-414(1932).

    [3] Gordon E I. A review of acousto-optical deflection and modulation devices[J]. Applied Optics, 5, 1629-1639(1966).

    [4] Harris S E, Wallace R W. Acousto-optic tunable filter[J]. Journal of the Optical Society of America, 59, 744-747(1969).

    [5] Gao J. The research of driver source and communication system of AOM[D], 4(2013).

    [6] Coquin G A, Pinnow D A, Warner A W. Physical properties of lead molybdate relevant to acousto-optic device applications[J]. Journal of Applied Physics, 42, 2162-2168(1971).

    [7] Tsai C S[M]. Guided-wave acousto-optics: interactions, devices, and applications(2013).

    [8] Wang P C, Zhang Z H. Double-filtering method based on two acousto-optic tunable filters for hyperspectral imaging application[J]. Optics Express, 24, 9888-9895(2016).

    [9] Savage N. Acousto-optic devices[J]. Nature Photonics, 4, 728-729(2010).

    [10] Yu K X, Ding X H, Pang Z G[M]. Principles of acousto-optic and acousto-optic devices, 194-379(2011).

    [11] Gross E. Change of wave-length of light due to elastic heat waves at scattering in liquids[J]. Nature, 126, 201-202(1930).

    [12] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).

    [13] DeMaria A J, Gagosz R, Barnard G. Ultrasonic-refraction shutter for optical maser oscillators[J]. Journal of Applied Physics, 34, 453-456(1963).

    [14] Dong X Y, Gao X C. Lectures on acousto-optics and its applications lecture 1 physical basis of acousto-optic interaction[J]. Piezoelectrics & Acoustooptics, 11, 69-79(1989).

    [15] Chang I C. Analysis of the noncollinear acousto-optic filter[J]. Electronics Letters, 11, 617-618(1975).

    [16] Bi R, Chen L R, Li J P et al. Acousto-optic diffraction efficiency enhancement system for polarization maintaining of arbitrarily polarized light[J]. Laser & Optoelectronics Progress, 58, 0123002(2021).

    [17] de Cusatis C, das Pankaj K[M]. Acousto-optic signal processing: fundamentals & applications(1991).

    [18] Dixon R W. Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners[J]. Journal of Applied Physics, 38, 5149-5153(1967).

    [19] Pinnow D. Guide lines for the selection of acoustooptic materials[J]. IEEE Journal of Quantum Electronics, 6, 223-238(1970).

    [20] Pomerantz M. Ultrasonic attenuation by phonons in insulators[C], 479-485(1972).

    [21] Woodruff T O, Ehrenreich H. Absorption of sound in insulators[J]. Physical Review, 123, 1553(1961).

    [22] Uchida N, Ohmachi Y. Elastic and photoelastic properties of TeO2 single crystal[J]. Journal of Applied Physics, 40, 4692-4695(1969).

    [23] Bonner W A, Singh S, Uitert L G et al. High quality tellurium dioxide for acousto-optic and non-linear applications[J]. Journal of Electronic Materials, 1, 154-164(1972).

    [24] Miyazawa S, Kondo S. Preparation of paratellurite TeO2[J]. Materials Research Bulletin, 8, 1215-1221(1973).

    [25] Chu Y Q, Ge Z W, Wu G Q et al. Growth of large-size and high-quality acousto-optic crystal TeO2[C], 426(2003).

    [26] Atanasoff J V, Hart P J. Dynamical determinitation of the elastic constants and their temperature coefficients for quartz[J]. Physical Review, 59, 85-96(1941).

    [27] Hong G. Acoustooptic deflection materials and techniques[J]. Laser & Infrared, 5, 1-24(1975).

    [28] Pinnow D A, van Uitert L G, Warner A W et al. Lead molybdate: a melt-grown crystal with a high figure of merit for acousto-optic device applications[J]. Applied Physics Letters, 15, 83-86(1969).

    [29] Ning Y Q, Chen Y Y, Zhang J et al. Brief review of development and techniques for high power semiconductor lasers[J]. Acta Optica Sinica, 41, 0114001(2021).

    [30] Abrams R L, Pinnow D A. Acousto-optic properties of crystalline germanium[J]. Journal of Applied Physics, 41, 2765-2768(1970).

    [31] Gottlieb M S, Goutzoulis A P, Singh N B. High-performance acousto-optic materials: Hg2Cl2 and PbBr2[J]. Optical Engineering, 31, 2110-2117(1992).

    [32] G&H[EB/OL]. http://www.goochandhousego.com

    [33] OPTO-ELECTRONIC[EB/OL]. http://www.aaoptoelectronic.com

    [34] ISOMET[EB/OL]. http://www.isomet.com

    [35] Brimrose[EB/OL]. http://www.brimrose.com

    [36] CETC[EB/OL]. http://cetccq.cetc.com.cn

    [37] Mys O, Martynyuk-Lototska I, Grabar A et al. Piezo-optic coefficients and acoustic wave velocities in Sn2P2S6 crystals[J]. Ukrainian Journal of Physical Optics, 7, 124(2006).

    [38] Martynyuk-Lototska I Y, Mys O G, Grabar A A et al. Highly efficient acousto-optic diffraction in Sn2P2S6 crystals[J]. Applied Optics, 47, 52-55(2008).

    [39] Alekperov O Z, Ibragimov G B, Axundov I A et al. Growth of orthorhombic and tetragonal modifications of TlInS2 from its monoclinic phase[J]. Physica Status Solidi (c), 6, 981-984(2009).

    [40] Godzhaev E M, Dzhafarova S R, Gyul’mamedov K D et al. Synthesis and growth of TlInSe2 and TlGaSe2 single crystals[J]. Inorganic Materials, 45, 728-730(2009).

    [41] Martynyuk-Lototska I, Trach I, Kokhan O et al. Efficient acousto-optic crystal, TlInS2: acoustic and elastic anisotropy[J]. Applied Optics, 56, 3179-3184(2017).

    [42] Martynyuk-Lototska I, Mys O, Say A et al. Anisotropy of acoustic and thermal expansion properties of TlInSe2 crystals[J]. Phase Transitions, 92, 23-35(2019).

    [43] Martynyuk-Lototska I, Myronchuk G, Kushnirevych M et al. Acoustic anisotropy of AgGaGe3Se8 crystals and their acoustooptic applications[J]. Ukrainian Journal of Physical Optics, 16, 77-84(2015).

    [44] Martynyuk-Lototska I, Parasyuk O, Vlokh R. Acoustic and elastic anisotropies of acoustooptic AgGaGeS4 crystals[J]. Ukrainian Journal of Physical Optics, 17, 141-147(2016).

    [45] Wu J, Huang W, Liu H G et al. Investigation of the thermal properties and crystal growth of the nonlinear optical crystals AgGaS2 and AgGaGeS4[J]. Crystal Growth & Design, 20, 3140-3153(2020).

    [46] Wan W J, Li H, Cao J C. Research progress on terahertz quantum cascade lasers[J]. Chinese Journal of Lasers, 47, 0701009(2020).

    [47] Voloshinov V B, Khorkin V S, Kuznetsov M S et al. Anisotropic acousto-optic interaction in KRS-5 cubic crystal possessing induced optical anisotropy[J]. Proceedings of SPIE, 11210, 112100E(2019).

    [48] Fedorov P P, Kuznetsov S V, Chuvilina E L et al. Single-crystalline InI: material for infrared optics[J]. Doklady Physics, 61, 261-265(2016).

    [49] Porokhovnichenko D L, Dyakonov E A, Voloshinov V B et al. Acousto-optic interaction in an InI single crystal[J]. Doklady Physics, 62, 407-410(2017).

    [50] Porokhovnichenko D L, Dyakonov E A, Kuznetsov S V et al. Indium iodide single crystal: breakthrough material for infrared acousto-optics[J]. Optics Letters, 45, 3435-3438(2020).

    [51] Mazur M M, Kuznetsov F A, Mazur L I et al. Elastic and photoelastic properties of KY(WO4)2 single crystals[J]. Inorganic Materials, 48, 67-73(2012).

    [52] Mazur M M, Velikovskiy D Y, Mazur L I et al. Elastic and photo-elastic characteristics of laser crystals potassium rare-earth tungstates KRE(WO4)2, where RE=Y, Yb, Gd and Lu[J]. Ultrasonics, 54, 1311-1317(2014).

    [53] Velikovskii D Y, Mazur M M, Pavlyuk A A et al. Investigation of the KLu(WO4)2 crystal as an acousto-optic material[J]. Physics of Wave Phenomena, 23, 58-62(2015).

    [54] Mazur M M, Mazur L I, Sirotkin A A et al. Acousto-optic modulators of high-power laser radiation on the basis of KGW and KYW crystals[J]. Quantum Electronics, 50, 957-961(2020).

    [55] Wu Q, Gao Z L, Tian X X et al. Biaxial crystal β-BaTeMo2O9: theoretical analysis and the feasibility as high-efficiency acousto-optic Q-switch[J]. Optics Express, 25, 24893-24900(2017).

    [56] Wu Q, Gao Z L, Yan B Z et al. A novel multi-functional crystal: self-acousto- optic Q-switch Raman laser based on α-BaTeMo2O9 crystal[J]. IEEE Photonics Technology Letters, 32, 1299-1302(2020).

    [57] Buryy O, Andrushchak N, Demyanyshyn N et al. Determination of acousto-optical effect maxima for optically isotropic crystalline material on the example of GaP cubic crystal[J]. Journal of the Optical Society of America B, 36, 2023-2029(2019).

    [58] Andrushchak A S, Buryy O A, Demyanyshyn N M et al. Global maxima of the acousto-optic effect in CaWO4 crystals[J]. Acta Physica Polonica A, 133, 928-932(2018).

    [59] Mytsyk B, Kryvyy T, Demyanyshyn N et al. Piezo-, elasto-and acousto-optic properties of Tl3AsS4 crystals[J]. Applied Optics, 57, 3796-3801(2018).

    [60] Dixon R, Cohen M. A new technique for measuring magnitudes of photoelastic tensors and its application to lithium niobate[J]. IEEE Journal of Quantum Electronics, 2, 128-129(1966).

    [61] Eschler H, Weidinger F. Acousto-optic properties of dense flint glasses[J]. Journal of Applied Physics, 46, 65-70(1975).

    [62] Yano T, Fukumoto A, Watanabe A. Tellurite glass: a new acousto-optic material[J]. Journal of Applied Physics, 42, 3674-3676(1971).

    [63] Li X Q, Lu J W, Yang L X. Study of acousto-optical properties of germanite glass[J]. Proceedings of SPIE, 2321, 89-91(1994).

    [64] Rabukhin A I, Belousova G V. Acousto-optic efficiency of bismuth-containing gallate glasses[J]. Glass and Ceramics, 50, 204-209(1993).

    [65] Seddon A B. Chalcogenide glasses: a review of their preparation, properties and applications[J]. Journal of Non-Crystalline Solids, 184, 44-50(1995).

    [66] Zakery A, Elliott S R. Optical properties and applications of chalcogenide glasses: a review[J]. Journal of Non-Crystalline Solids, 330, 1-12(2003).

    [67] Dai S X, Chen H G, Li M Z et al. Chalcogenide glasses and their infrared optical applications[J]. Infrared and Laser Engineering, 41, 847-852(2012).

    [68] Abdulhalim I, Pannell C N, Deol R S et al. High performance acousto-optic chalcogenide glass based on Ga2S3-La2S3 systems[J]. Journal of Non-Crystalline Solids, 164/165/166, 1251-1254(1993).

    [69] Fukuda S, Shiosaki T, Kawabata A. Acoustic and acousto-optic properties of amorphous Se[J]. Japanese Journal of Applied Physics, 19, 2075-2083(1980).

    [70] Ohmachi Y, Uchida N. Vitreous As2Se3; investigation of acousto-optical properties and application to infrared modulator[J]. Journal of Applied Physics, 43, 1709-1712(1972).

    [71] Krause J T, Kurkjian C R, Pinnow D A et al. Low acoustic loss chalcogenide glasses: a new category of materials for acoustic and acousto-optic applications[J]. Applied Physics Letters, 17, 367-368(1970).

    [72] Seddon A B, Laine M J. A review of amorphous chalcogenides as materials for infrared bulk acousto-optic devices[M]. Andriesh A, Bertolotti M. Physics and applications of non-crystalline semiconductors in optoelectronics. NATO ASI series, 36, 327-336(1997).

    [73] Kulakova L A, Kudoyarova V K, Melekh B T et al. Si (Ge)-Se-Te glasses: electrical and acoustic properties[J]. Journal of Optoelectronics and Advanced Materials, 8, 800-804(2006).

    [74] Khorkin V S, Voloshinov V B, Efimova A I et al. Acousto-optic properties of germanium-, selenium-, silicon-, and tellurium-based alloys[J]. Optics and Spectroscopy, 128, 244-249(2020).

    [75] Cao Z F, Dai S X, Liu Z J et al. Investigation of the acousto-optical properties of Ge-As-Te-(Se) chalcogenide glasses at 10.6 μm wavelength[J]. Journal of the American Ceramic Society, 104, 3224-3234(2021).

    [76] Mytsyk B, Shpotyuk O, Demyanyshyn N et al. Photoelastic and acousto-optic effects in 65GeS2-25Ga2S3-10CsCl glass[J]. Journal of Non-Crystalline Solids, 481, 160-163(2018).

    [77] Ding S J, Liu Z J, Dai S X et al. Novel acousto-optic material based on Ge-Te-AgI chalcohalide glasses[J]. Ceramics International, 47, 12072-12077(2021).

    [78] Ding S J, Dai S X, Cao Z F et al. Composition dependence of the physical and acousto-optic properties of transparent Ge-As-S chalcogenide glasses[J]. Optical Materials, 108, 110175(2020).

    [79] Cao Z F, Dai S X, Ding S J et al. Correlation between acousto-optic and structural properties of Ge-Sb-S chalcogenide glasses[J]. Ceramics International, 46, 10385-10391(2020).

    [80] Kulakova L A, Melekh B T, Yakhkind E Z et al. Influence of heat treatment on the structure and physical properties of Si20Te80 glasses[J]. Glass Physics and Chemistry, 27, 233-240(2001).

    [81] Bletskan D I, Vakulchak V V, Fedelesh V I. Acousto-optic properties of GexS100-x glasses and acousto-optic modulator on their basis[J]. Технология и конструирование в электронной аппаратуре, 24-31(2014).

    [82] Chen H T, He C J, Li Z Q et al. Acousto-optic effect of tetragonal lead magnesium niobate-lead titanate single crystal[J]. Journal of Synthetic Crystals, 49, 587-591, 612(2020).

    Zenghua Xu, Shixun Dai, Changgui Lin, Zhongchao Wu. Research Progress of Acousto-Optic Crystals, Glass Materials and Modulators[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516007
    Download Citation