
- Photonics Research
- Vol. 10, Issue 7, 1744 (2022)
Abstract
1. INTRODUCTION
The light manipulation at nanoscales not only lays the foundation of a wealth of science, particularly in the fields of physics, chemistry, and communications, but can also promote a considerable number of extraordinary applications in modern physics and photonics [1–9]. However, conventional light manipulation methods are often limited by the optical diffraction limit, making them bottlenecked in miniaturization and further hindering their practical applications. In the past decades, surface plasmon resonance (SPR) in metal nanostructures has served as a promising candidate for overcoming this barrier due to its abilities in channeling the far-field radiation to subwavelength dimensions [10–19]. Nevertheless, due to inherent ohmic loss of plasmonic metals and radiative loss characteristics of conventional optical resonance modes, the use of plasmonic nanocavities in light manipulation is limited. Therefore, it is highly desirable for researchers to seek new optical resonance modes with subradiant characteristics and materials with intrinsically low optical losses.
More recently, distinct optical resonances in dielectric nanostructures have been developed as a new method to facilitate light manipulation in nanophotonics [20–23]. In this method, high-refractive-index materials such as Ge, GaAs, and Si are employed to reduce dissipative losses owing to the small imaginary parts of their dielectric functions. Meanwhile, specific resonant optical modes are selectively excited to diminish the total electric dipole moment of dielectric nanostructure to suppress radiation loss. Particularly, the anapole mode stands out from the crowd in efficient light manipulation due to the nonradiant resonance characteristic [24–26]. The anapole mode originates from the destructive interference between the electric dipole (ED) and toroidal dipole (TD) that have the same amplitude but opposite phases in the far field [27,28]. So far, light manipulation based on the anapole mode has been widely investigated in the weak coupling regime, such as local field enhancement, nonlinear optical effects, and nanolasers [29–32]. In the strong coupling regime, pioneering researchers have already accomplished the interaction between the anapole mode and exciton in heterostructures [33–36]. However, these optical cavities feature larger volumes and relatively weak field enhancement. Moreover, strong light–matter interactions often come with the challenges of aligning the resonator cavities with the excitons, while the electromagnetic energy of the anapole mode in previously pioneering research is mostly distributed inside the nanostructures, which makes only a small number of molecules able to access the near-field enhancement directly and results in smaller Rabi splitting [37]. Therefore, it is still a challenge to obtain the spatial overlap between subwavelength optical cavity and excitons in an all-dielectric system in order to achieve efficient light manipulation based on the anapole mode.
Herein, we theoretically design a system capable of accomplishing the efficient light manipulation in nanoholes and further enhancing light−matter interactions by exploiting the anapole mode. It is noted that bulk
Sign up for Photonics Research TOC. Get the latest issue of Photonics Research delivered right to you!Sign up now
2. MODELS AND PRINCIPLE
The proposed model consists of a two-dimensional (2D) perforated Si nanodisk array filled with bulk
Figure 1.(a) Schematic illustration of the Si nanodisk-bulk
The coupling between anapole modes in the Si nanodisk array and excitons in the bulk
3. RESULTS AND DISCUSSION
First, the optical responses of the Si nanodisk array under normal illumination with different structural parameters are studied. In Fig. 2(a), we plot the transmission contour map with respect to radii of Si nanodisks and wavelength of incident light, where the height of the Si nanodisk is
Figure 2.Analyses of the nonradiating anapole mode in the heterostructures. (a) Simulated transmission contour map as a function of radius of the Si nanodisk array (
In Figs. 2(d)–2(f), we calculate near-field distributions and displacement vector maps under D1 mode. It is found that the displacement vector at the center cross section of the
In addition, to reveal the effect of the periodicity on the D1 mode, optical properties for the different numbers of unit cells of the
Figure 3.(a) Normalized Cartesian multipole decomposition results for the Si nanodisk-bulk
Figure 4.Analyses of the resonance coupling in the heterostructures, where the excitonic effect of bulk
To investigate the physical origin of the D1 mode, we calculate the scattered power of ED, magnetic dipole (MD), and TD moments of the heterostructure array with
It can be found that the scattered power of ED and TD intersects at about 656 nm, as shown in Fig. 3(a), while the phase difference between them equals approximately
The realization of strong coupling requires the simultaneous spatial and spectral overlap, where the spatial coincidence has been accomplished by putting the bulk
Next, the resonance coupling for the heterostructure system with different radius r of
In Appendix F, the coupling behavior is studied when the bulk
4. CONCLUSIONS
In summary, we have studied the coupling characteristics of excitons and anapole modes in a Si nanodisk-bulk
Acknowledgment
Acknowledgment. The authors thank Dr. Shaoxin Shen and Dr. Yan Chen for helpful discussions.
APPENDIX A: REFRACTIVE INDEX OF BULK WS2
To compare the refractive index of the Si and bulk WS2, we give the specific refractive index of bulk WS2 including the case of
Figure 5.Wavelength dependence of the (a), (b) real and (c), (d) imaginary parts of the in-plane complex index of refraction for a Lorentz model dielectric of bulk
APPENDIX B: ADVANTAGES OF THE PERIODICITY
In Fig.
Figure 6.(a) Simulated scattering spectrum of isolated,
Figure 7.(a) Simulated transmission spectrum for Si nanodisk-bulk
APPENDIX C: MULTIPOLES AND TOTAL SCATTERING POWER
In Fig.
Figure 8.(a) Normalized corresponding transmission spectra and contributions from different multipoles for the Si nanodisk-bulk
APPENDIX D: RADIUS-DEPENDENT TRANSMISSION SPECTRA
In Fig.
Figure 9.Simulated transmission contour map as a function of radius of the Si nanodisk (
APPENDIX E: RADIUS-DEPENDENT AND f-DEPENDENT OF THE WS2 TRANSMISSION SPECTRA AND NEAR-FIELD DISTRIBUTION
In Fig.
Figure 10.(a) Simulated transmission contour map as a function of radius of the
Figure 11.(a) Simulated transmission contour map as a function of
APPENDIX F: RADIUS-DEPENDENT TRANSMISSION SPECTRA OF DIFFERENT POSITIONS OF WS2
In Fig.
Figure 12.(a) Simulated transmission contour map as a function of radius of the Si nanodisk (
APPENDIX G: TRANSMISSION SPECTRA OF THE Si NANODISK-J-AGGREGATE HETEROSTRUCTURE ARRAY
In Fig.
Figure 13.(a) Simulated transmission spectrum of the Si nanodisk array, where the radius of the Si nanodisk is
References
[1] C. Li, S. Duan, B. Wen, S. B. Li, M. Kathiresan, L. Q. Xie, S. Chen, J. R. Anema, B. W. Mao, Y. Luo, Z. Q. Tian, J. F. Li. Observation of inhomogeneous plasmonic field distribution in a nanocavity. Nat. Nanotechnol., 15, 922-926(2020).
[2] Y. He, W. Yang, T. M. Shih, J. Wang, D. Zhang, M. Gao, F. Jiao, Y. Zeng, J. L. Yang, J. Pang, R. Gao, G. Sun, M. D. Li, J. F. Li, Z. Yang. Manipulation of ultrafast nonlinear optical response based on surface plasmon resonance. Adv. Opt. Mater., 9, 2100847(2021).
[3] J. Park, S. Hong, Y. S. Lee, H. Lee, S. Kim, K. Dholakia, K. Oh. Optical manipulation of a dielectric particle along polygonal closed-loop geometries within a single water droplet. Sci. Rep., 11, 12690(2021).
[4] W.-J. Chen, M. Xiao, C. T. Chan. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states. Nat. Commun., 7, 13038(2016).
[5] S. Yu, C.-W. Qiu, Y. Chong, S. Torquato, N. Park. Engineered disorder in photonics. Nat. Rev. Mater., 6, 226-243(2021).
[6] D. Brunner, M. C. Soriano, C. R. Mirasso, I. Fischer. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun., 4, 1364(2013).
[7] S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, Ş. K. Özdemir, Z. Liu, L. Yang. Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance. Photon. Res., 6, 346-356(2018).
[8] Z. Shen, Y.-L. Zhang, C.-L. Zou, G.-C. Guo, C.-H. Dong. Dissipatively controlled optomechanical interaction via cascaded photon-phonon coupling. Phys. Rev. Lett., 126, 163604(2021).
[9] N. Muhammad, Y. Chen, C. W. Qiu, G. P. Wang. Optical bound states in continuum in MoS2-based metasurface for directional light emission. Nano Lett., 21, 967-972(2021).
[10] J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, D. R. Smith. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater., 18, 668-678(2019).
[11] L. Sun, Z. Li, J. He, P. Wang. Strong coupling with directional absorption features of Ag@Au hollow nanoshell/J-aggregate heterostructures. Nanophotonics, 8, 1835-1845(2019).
[12] J. Sun, H. Hu, D. Zheng, D. X. Zhang, Q. Deng, S. P. Zhang, H. X. Xu. Light-emitting plexciton: exploiting plasmon-exciton interaction in the intermediate coupling regime. ACS Nano, 12, 10393-10402(2018).
[13] H. Shan, Y. Yu, X. L. Wang, Y. Luo, S. Zu, B. W. Du, T. Y. Han, B. W. Li, Y. Li, J. R. Wu, F. Lin, K. B. Shi, B. K. Tay, Z. Liu, X. Zhu, Z. Y. Fang. Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime. Light Sci. Appl., 8, 9(2019).
[14] J. Wang, W. Lin, X. Xu, F. Ma, M. Sun. Plasmon-exciton coupling interaction for surface catalytic reactions. Chem. Rec., 18, 481-490(2018).
[15] J. Wang, W. Yang, P. M. Radjenovic, Y. He, Z. Yang, J. F. Li. Strong coupling between magnetic resonance and propagating surface plasmons at visible light frequencies. J. Chem. Phys., 152, 014702(2020).
[16] T. Qu, F. Liu, Y. Lin, K. Cui, X. Feng, W. Zhang, Y. Huang. Cherenkov radiation generated in hexagonal boron nitride using extremely low-energy electrons. Nanophotonics, 9, 1491-1499(2020).
[17] L. Meng, R. Yu, M. Qiu, F. J. García de Abajo. Plasmonic nano-oven by concatenation of multishell photothermal enhancement. ACS Nano, 11, 7915-7924(2017).
[18] M. Moskovits. Surface-enhanced spectroscopy. Rev. Mod. Phys., 57, 783-826(1985).
[19] S. A. Maier, H. A. Atwater. Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys., 98, 011101(2005).
[20] H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, S. Deng. Resonance coupling in silicon nanosphere-J-aggregate heterostructures. Nano Lett., 16, 6886-6895(2016).
[21] M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, Y. S. Kivshar. High-
[22] O. Yavas, M. Svedendahl, R. Quidant. Unravelling the role of electric and magnetic dipoles in biosensing with Si nanoresonators. ACS Nano, 13, 4582-4588(2019).
[23] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, B. Luk’yanchuk. Optically resonant dielectric nanostructures. Science, 354, aag2472(2016).
[24] K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, A. Fratalocchi. Nonradiating photonics with resonant dielectric nanostructures. Nanophotonics, 8, 725-745(2019).
[25] G.-M. Pan, F.-Z. Shu, L. Wang, L. Shi, A. B. Evlyukhin. Plasmonic anapole states of active metamolecules. Photon. Res., 9, 822-828(2021).
[26] X. Li, J. Yin, J. Liu, F. Shu, T. Lang, X. Jing, Z. Hong. Resonant transparency of a planar anapole metamaterial at terahertz frequencies. Photon. Res., 9, 125-130(2021).
[27] A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, Y. S. Kivshar. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun., 6, 8069(2015).
[28] Y. Yang, V. A. Zenin, S. I. Bozhevolnyi. Anapole-assisted strong field enhancement in individual all-dielectric nanostructures. ACS Photon., 5, 1960-1966(2018).
[29] J. S. Totero Gongora, A. E. Miroshnichenko, Y. S. Kivshar, A. Fratalocchi. Anapole nanolasers for mode-locking and ultrafast pulse generation. Nat. Commun., 8, 15535(2017).
[30] D. G. Baranov, R. Verre, P. Karpinski, M. Käll. Anapole-enhanced intrinsic Raman scattering from silicon nanodisks. ACS Photon., 5, 2730-2736(2018).
[31] G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, S. A. Maier. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Lett., 16, 4635-4640(2016).
[32] J. J. Hernandez-Sarria, O. N. Oliveira, J. R. Mejia-Salazar. Toward lossless infrared optical trapping of small nanoparticles using nonradiative anapole modes. Phys. Rev. Lett., 127, 186803(2021).
[33] R. Verre, D. G. Baranov, B. Munkhbat, J. Cuadra, M. Kall, T. Shegai. Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators. Nat. Nanotechnol., 14, 679-683(2019).
[34] S.-D. Liu, J.-L. Fan, W.-J. Wang, J.-D. Chen, Z.-H. Chen. Resonance coupling between molecular excitons and nonradiating anapole modes in silicon nanodisk-J-aggregate heterostructures. ACS Photon., 5, 1628-1639(2018).
[35] K. As’ham, I. Al-Ani, L. Huang, A. E. Miroshnichenko, H. T. Hattori. Boosting strong coupling in a hybrid WSe2 monolayer–anapole–plasmon system. ACS Photon., 8, 489-496(2021).
[36] K. Du, P. Li, K. Gao, H. Wang, Z. Yang, W. Zhang, F. Xiao, S. J. Chua, T. Mei. Strong coupling between dark plasmon and anapole modes. J. Phys. Chem. Lett., 10, 4699-4705(2019).
[37] K. V. Baryshnikova, D. A. Smirnova, B. S. Luk’yanchuk, Y. S. Kivshar. Optical anapoles: concepts and applications. Adv. Opt. Mater., 7, 1801350(2019).
[38] Z. Fenghua, C. Zhizhang, Z. Jiazong. Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method. IEEE Trans. Microw. Theory, 48, 1550-1558(2000).
[39] E. D. Palik. Handbook of Optical Constants of Solids(1998).
[40] S. Wang, Q. Le-Van, F. Vaianella, B. Maes, S. Eizagirre Barker, R. H. Godiksen, A. G. Curto, J. G. Rivas. Limits to strong coupling of excitons in multilayer WS2 with collective plasmonic resonances. ACS Photon., 6, 286-293(2019).
[41] E. Cao, W. H. Lin, M. T. Sun, W. J. Liang, Y. Z. Song. Exciton-plasmon coupling interactions: from principle to applications. Nanophotonics, 7, 145-167(2018).
[42] B. Luk’yanchuk, R. Paniagua-Domínguez, A. I. Kuznetsov, A. E. Miroshnichenko, Y. S. Kivshar. Hybrid anapole modes of high-index dielectric nanoparticles. Phys. Rev. A, 95, 063820(2017).
[43] S.-Q. Li, K. B. Crozier. Origin of the anapole condition as revealed by a simple expansion beyond the toroidal multipole. Phys. Rev. B, 97, 245423(2018).
[44] E. A. Gurvitz, K. S. Ladutenko, P. A. Dergachev, A. B. Evlyukhin, A. E. Miroshnichenko, A. S. Shalin. The high-order toroidal moments and anapole states in all-dielectric photonics. Laser Photon. Rev., 13, 1800266(2019).
[45] E. E. Radescu, G. Vaman. Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles. Phys. Rev. E, 65, 046609(2002).
[46] R. Wang, L. Dal Negro. Engineering non-radiative anapole modes for broadband absorption enhancement of light. Opt. Express, 24, 19048-19062(2016).
[47] C. Zhou, S. Li, M. Fan, X. Wang, Y. Xu, W. Xu, S. Xiao, M. Hu, J. Liu. Optical radiation manipulation of Si-Ge2Sb2Te5 hybrid metasurfaces. Opt. Express, 28, 9690-9701(2020).
[48] S. Li, C. Zhou, T. Liu, S. Xiao. Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces. Phys. Rev. A, 100, 063803(2019).
[49] P. C. Wu, C. Y. Liao, V. Savinov, T. L. Chung, W. T. Chen, Y. W. Huang, P. R. Wu, Y. H. Chen, A. Q. Liu, N. I. Zheludev, D. P. Tsai. Optical anapole metamaterial. ACS Nano, 12, 1920-1927(2018).
[50] V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, N. I. Zheludev. Spectral collapse in ensembles of metamolecules. Phys. Rev. Lett., 104, 223901(2010).
[51] S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, T. S. Luk, J. R. Wendt, J. L. Reno, G. A. Keeler, I. Brener, M. B. Sinclair. Broken symmetry dielectric resonators for high quality factor Fano metasurfaces. ACS Photon., 3, 2362-2367(2016).
[52] A. V. Kuznetsov, A. C. Valero, M. Tarkhov, V. Bobrovs, D. Redka, A. S. Shalin. Transparent hybrid anapole metasurfaces with negligible electromagnetic coupling for phase engineering. Nanophotonics, 10, 4385-4398(2021).

Set citation alerts for the article
Please enter your email address