[4] Sun Y, Liu F M, Xue H Y. High-speed and high-density optoelectronic co-package technologies[J]. ZTE Technology Journal, 24, 27-32(2018).
[5] Margalit N, Xiang C, Bowers S M et al. Perspective on the future of silicon photonics and electronics[J]. Applied Physics Letters, 118, 1-10(2021).
[6] Cheng J W, Jiang X Y, Zhou H L et al. Research progress and challenges of photoelectric intelligent computing[J]. Chinese Journal of Lasers, 49, 1219001(2022).
[7] Sun X Y, Liang C, Zhang W et al. Application of ultrashort pulse laser manufacturing in microelectrical/optical interconnection[J]. Chinese Journal of Lasers, 49, 1002502(2022).
[8] Minkenberg C, Krishnaswamy R, Zilkie A et al. Co-packaged datacenter optics: opportunities and challenges[J]. IET Optoelectronics, 15, 77-91(2021).
[9] Ou X P, Yang Z L, Tang B et al. 2.5D/3D silicon-based optoelectronic integration technology and its application[J]. Study on Optical Communications, 1-16(2023).
[10] Johnson J E, Bacher K, Schaevitz R et al. Performance and reliability of advanced CW lasers for silicon photonics applications[C](2022).
[11] Zhou Z P[M]. Silicon photonics, 1-11(2012).
[12] Wang Z H, Wang T, Zhang J J. Development and thinking of silicon photonics heterogenous integration[J]. Bulletin of Chinese Academy of Sciences, 37, 360-367(2022).
[13] Zhou Z P, Yang F H, Chen R X et al. Silicon photonics-a converging point of microelectronics and optoelectronics[J]. Micro/Nano Electronics and Intelligent Manufacturing, 1, 4-15(2019).
[14] Liang D, Bowers J E. Recent progress in heterogeneous III-V-on-silicon photonic integration[J]. Light: Advanced Manufacturing, 2, 59(2021).
[15] Wang M Y, Ding T J, Gu L et al. Overview of heterogeneous integration microsystem for information processing applications[J]. Electronics & Packaging, 21, 100102(2021).
[18] Hosseini K, Kok E, Shumarayev S Y et al. 8 Tbps co-packaged FPGA and silicon photonics optical IO[C](2021).
[19] Hosseini K, Kok E, Shumarayev S Y et al. 5.12 Tbps co-packaged FPGA and silicon photonics interconnect I/O[C], 260-261(2022).
[21] Nagarajan R, Ding L, Coccioli R et al. 2.5D heterogeneous integration for silicon photonics engines in optical transceivers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 29, 8200209(2022).
[29] Abrams N C, Cheng Q X, Glick M et al. Silicon photonic 2.5D multi-chip module transceiver for high-performance data centers[J]. Journal of Lightwave Technology, 38, 3346-3357(2020).
[30] Hsia H, Tsai C H, Ting K C et al. Heterogeneous integration of a compact universal photonic engine for silicon photonics applications in HPC[C], 263-268(2021).
[31] Doerr C, Heanue J, Chen L et al. Silicon photonics coherent transceiver in a ball-grid array package[C], Th5D.5(2017).
[32] Choi S, Bae Y, Oh S et al. A new FOWLP platform for hybrid optical packaging-demonstration on 100 Gbps transceiver[C](2021).
[33] Kim J H, Kwon Y T, Kwon Y H et al. Fan out package: performance and scalability perspective[C], 1194-1199(2018).
[34] Xu H, Zhu Y J, Dai F H et al. Vertical interconnection structures of wafer level package[J]. Electronics & Packaging, 21, 100107(2021).
[35] Chou B C, Sato Y, Sukumaran V et al. Modeling, design, and fabrication of ultra-high bandwidth 3D glass photonics (3DGP) in glass interposers[C], 286-291(2013).
[36] Sukumaran V, Bandyopadhyay T, Chen Q et al. Design, fabrication and characterization of low-cost glass interposers with fine-pitch through-package-vias[C], 583-588(2011).
[37] Yang Y, Yu M B, Fang Q et al. 3D silicon photonics packaging based on TSV interposer for high density on-board optics module[C], 483-489(2016).
[38] Miyaguchi K, Ban Y, Pantano N et al. 110 GHz through-silicon via’s integrated in silicon photonics interposers for next-generation optical modules[C](2021).
[39] Gambino J P, Adderly S A, Knickerbocker J U. An overview of through-silicon-via technology and manufacturing challenges[J]. Microelectronic Engineering, 135, 73-106(2015).
[40] He H M, Xue H Y, Sun Y et al. Design and realization of multi-channel and high-bandwidth 2.5D transmitter integrated with silicon photonic MZM[J]. Journal of Lightwave Technology, 40, 5201-5215(2022).
[41] Bogaerts L, El-Mekki Z, van Huylenbroeck S et al. High-speed TSV integration in an active silicon photonics interposer platform[C](2019).
[42] Zheng Q, Yang P, Xue H Y et al. Research on 3D optical module integrating edge coupler and TSV[J]. Journal of Lightwave Technology, 40, 6190-6200(2022).
[43] Kim D W, Au K Y, Li H Y et al. 2.5D silicon optical interposer for 400 Gbps electronic-photonic integrated circuit platform packaging[C](2018).
[44] Kim D W, Yu L H, Chang K F et al. 3D system-on-packaging using through silicon via on SOI for high-speed optical interconnections with silicon photonics devices for application of 400 Gbps and beyond[C], 834-840(2018).
[45] Krishnamoorthy A V, Thacker H D, Torudbakken O et al. From chip to cloud: optical interconnects in engineered systems[J]. Journal of Lightwave Technology, 35, 3103-3115(2017).
[46] Zhao W Q, Mei X S, Yang Z X. Review on morphological features and process control of holes drilled by pulsed laser on surface of electronic ceramic substrates[J]. Chinese Journal of Lasers, 49, 1002403(2022).
[47] Cheng Q X, Bahadori M, Glick M et al. Recent advances in optical technologies for data centers: a review[J]. Optica, 5, 1354-1370(2018).
[48] Tan M, Xu J, Liu S Y et al. Co-packaged optics (CPO): status, challenges, and solutions[J]. Frontiers of Optoelectronics, 16, 1-40(2023).
[49] Mahajan R, Li X Q, Fryman J et al. Co-packaged photonics for high performance computing: status, challenges and opportunities[J]. Journal of Lightwave Technology, 40, 379-392(2022).
[50] Thomson D, Zilkie A, Bowers J E et al. Roadmap on silicon photonics[J]. Journal of Optics, 18, 073003(2016).