• Photonics Research
  • Vol. 11, Issue 5, 695 (2023)
Zhengchang Liu1、†, Zhibo Dang1、†, Zhixin Liu, Yu Li, Xiao He, Yuchen Dai, Yuxiang Chen, Pu Peng, and Zheyu Fang*
Author Affiliations
  • School of Physics, State Key Lab for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Yangtze Delta Institute of Optoelectronics, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
  • show less
    DOI: 10.1364/PRJ.480845 Cite this Article Set citation alerts
    Zhengchang Liu, Zhibo Dang, Zhixin Liu, Yu Li, Xiao He, Yuchen Dai, Yuxiang Chen, Pu Peng, Zheyu Fang. Self-design of arbitrary polarization-control waveplates via deep neural networks[J]. Photonics Research, 2023, 11(5): 695 Copy Citation Text show less
    References

    [1] P. K. Venuthurumilli, P. D. Ye, X. F. Xu. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano, 12, 4861-4867(2018).

    [2] C. Chen, Y. Wang, M. Jiang, J. Wang, J. Guan, B. Zhang, L. Wang, J. Lin, P. Jin. Parallel polarization illumination with a multifocal axicon metalens for improved polarization imaging. Nano Lett., 20, 5428-5434(2020).

    [3] K. Frischwasser, K. Cohen, J. Kher-Alden, S. Dolev, S. Tsesses, G. Bartal. Real-time sub-wavelength imaging of surface waves with nonlinear near-field optical microscopy. Nat. Photonics, 15, 442-448(2021).

    [4] N. S. Holliman, N. A. Dodgson, G. E. Favalora, L. Pockett. Three-dimensional displays: a review and applications analysis. IEEE Trans. Broadcast., 57, 362-371(2011).

    [5] D. Ayuso, O. Neufeld, A. F. Ordonez, P. Decleva, G. Lerner, O. Cohen, M. Ivanov, O. Smirnova. Synthetic chiral light for efficient control of chiral light–matter interaction. Nat. Photonics, 13, 866-871(2019).

    [6] Z. W. Li, Y. Li, T. Y. Han, X. L. Wang, Y. Yu, B. Tay, Z. Liu, Z. Y. Fang. Tailoring MoS2 exciton–plasmon interaction by optical spin-orbit coupling. ACS Nano, 11, 1165-1171(2017).

    [7] L. Zheng, Z. Liu, D. Liu, X. Wang, Y. Li, M. Jiang, F. Lin, H. Zhang, B. Shen, X. Zhu, Y. Gong, Z. Fang. Deep subwavelength control of valley polarized cathodoluminescence in h-BN/WSe2/h-BN heterostructure. Nat. Commun., 12, 291(2021).

    [8] Q. Li, W. Bao, Z. Nie, Y. Xia, Y. Xue, Y. Wang, S. Yang, X. Zhang. A non-unitary metasurface enables continuous control of quantum photon–photon interactions from bosonic to fermionic. Nat. Photonics, 15, 267-271(2021).

    [9] C. Chi, Q. Jiang, Z. Liu, L. Zheng, M. Jiang, H. Zhang, F. Lin, B. Shen, Z. Fang. Selectively steering photon spin angular momentum via electron-induced optical spin Hall effect. Sci. Adv., 7, eabf8011(2021).

    [10] M. Tymchenko, J. S. Gomez-Diaz, J. Lee, N. Nookala, M. A. Belkin, A. Alù. Gradient nonlinear Pancharatnam–Berry metasurfaces. Phys. Rev. Lett., 115, 207403(2015).

    [11] P. Michel, E. Kur, M. Lazarow, T. Chapman, L. Divol, J. S. Wurtele. Polarization-dependent theory of two-wave mixing in nonlinear media, and application to dynamical polarization control. Phys. Rev. X, 10, 021039(2020).

    [12] S.-D. Liu, E. S. P. Leong, G.-C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, D. Y. Lei. Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation. ACS Nano, 10, 1442-1453(2016).

    [13] P. St. J. Russell. Not just saying no. Nature, 381, 290(1996).

    [14] D. R. Smith, J. B. Pendry, M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 305, 788-792(2004).

    [15] D. K. Gramotnev, S. I. Bozhevolnyi. Plasmonics beyond the diffraction limit. Nat. Photonics, 4, 83-91(2010).

    [16] Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, J. Valentine. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett., 14, 1394-1399(2014).

    [17] L.-J. Black, Y. Wang, C. H. de Groot, A. Arbouet, O. L. Muskens. Optimal polarization conversion in coupled dimer plasmonic nanoantennas for metasurfaces. ACS Nano, 8, 6390-6399(2014).

    [18] F. Ding, Z. Wang, S. He, V. M. Shalaev, A. V. Kildishev. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. ACS Nano, 9, 4111-4119(2015).

    [19] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).

    [20] S. Jahani, Z. Jacob. All-dielectric metamaterials. Nat. Nanotechnol., 11, 23-36(2016).

    [21] A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [22] G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, S. Zhang. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [23] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, F. Capasso. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [24] A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta. Performing mathematical operations with metamaterials. Science, 343, 160-163(2014).

    [25] S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, A. W. Rodriguez. Inverse design in nanophotonics. Nat. Photonics, 12, 659-670(2018).

    [26] W. Ma, Z. Liu, Z. A. Kudyshev, A. Boltasseva, W. Cai, Y. Liu. Deep learning for the design of photonic structures. Nat. Photonics, 15, 77-90(2021).

    [27] J. Jiang, J. A. Fan. Global optimization of dielectric metasurfaces using a physics-driven neural network. Nano Lett., 19, 5366-5372(2019).

    [28] Y. Li, Y. Xu, M. Jiang, B. Li, T. Han, C. Chi, F. Lin, B. Shen, X. Zhu, L. Lai, Z. Fang. Self-learning perfect optical chirality via a deep neural network. Phys. Rev. Lett., 123, 213902(2019).

    [29] W. Ma, F. Cheng, Y. Xu, Q. Wen, Y. Liu. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Adv. Mater., 31, 1901111(2019).

    [30] I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, H. Suchowski. Plasmonic nanostructure design and characterization via deep learning. Light Sci. Appl., 7, 60(2018).

    [31] W. Ma, F. Cheng, Y. Liu. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano, 12, 6326-6334(2018).

    [32] G. Genty, L. Salmela, J. M. Dudley, D. Brunner, A. Kokhanovskiy, S. Kobtsev, S. K. Turitsyn. Machine learning and applications in ultrafast photonics. Nat. Photonics, 15, 91-101(2021).

    [33] S. Joshi, A. Kiani. Hybrid artificial neural networks and analytical model for prediction of optical constants and bandgap energy of 3D nanonetwork silicon structures. Opto-electron. Adv., 4, 210039(2021).

    [34] S. Kim, P. Y. Lu, C. Loh, J. Smith, J. Snoek, M. Soljačić. Deep learning for Bayesian optimization of scientific problems with high-dimensional structure. arXiv(2022).

    [35] N. W. Bigelow, A. Vaschillo, J. P. Camden, D. J. Masiello. Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers. ACS Nano, 7, 4511-4519(2013).

    [36] Y. Q. Wang, M. B. Pu, Z. J. Zhang, X. Li, X. L. Ma, Z. Y. Zhao, X. G. Luo. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection. Sci. Rep., 5, 17733(2016).

    [37] W. Zang, Q. Yuan, R. Chen, L. Li, T. Li, X. Zou, G. Zheng, Z. Chen, S. Wang, Z. Wang, S. Zhu. Chromatic dispersion manipulation based on metalenses. Adv. Mater., 32, 1904935(2020).

    [38] W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2018).

    [39] B. Liu, Y. He, S.-W. Wong, Y. Li. Multifunctional vortex beam generation by a dynamic reflective metasurface. Adv. Opt. Mater., 9, 2001689(2021).

    [40] A. L. Gaeta, M. Lipson, T. J. Kippenberg. Photonic-chip-based frequency combs. Nat. Photonics, 13, 158-169(2019).

    [41] J. T. Heiden, F. Ding, J. Linnet, Y. Yang, J. Beermann, S. I. Bozhevolnyi. Gap‐surface plasmon metasurfaces for broadband circular‐to‐linear polarization conversion and vector vortex beam generation. Adv. Opt. Mater., 7, 1801414(2019).

    [42] Q. Song, M. Odeh, J. Zúñiga-Pérez, B. Kanté, P. Genevet. Plasmonic topological metasurface by encircling an exceptional point. Science, 373, 1133-1137(2021).

    [43] F. J. García de Abajo. Optical excitations in electron microscopy. Rev. Mod. Phys., 82, 209-275(2010).

    [44] S. Zu, T. Han, M. Jiang, F. Lin, X. Zhu, Z. Fang. Deep-subwavelength resolving and manipulating of hidden chirality in achiral nanostructures. ACS Nano, 12, 3908-3916(2018).

    [45] M. Esslinger, R. Vogelgesang. Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes. ACS Nano, 6, 8173-8182(2012).

    [46] S. An, B. Zheng, H. Tang, M. Y. Shalaginov, L. Zhou, H. Li, M. Kang, K. A. Richardson, T. Gu, J. Hu, C. Fowler, H. Zhang. Multifunctional metasurface design with a generative adversarial network. Adv. Opt. Mater., 9, 2001433(2021).

    [47] E. Brochu, V. M. Cora, N. de Freitas. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv(2010).

    [48] T. Coenen, A. Polman. Optical properties of single plasmonic holes probed with local electron beam excitation. ACS Nano, 8, 7350-7358(2014).

    [49] T. Han, S. Zu, Z. Li, M. Jiang, X. Zhu, Z. Fang. Reveal and control of chiral cathodoluminescence at subnanoscale. Nano Lett., 18, 567-572(2018).

    Zhengchang Liu, Zhibo Dang, Zhixin Liu, Yu Li, Xiao He, Yuchen Dai, Yuxiang Chen, Pu Peng, Zheyu Fang. Self-design of arbitrary polarization-control waveplates via deep neural networks[J]. Photonics Research, 2023, 11(5): 695
    Download Citation