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The manipulation of polarization states beyond the optical limit presents advantages in various applications.
Considerable progress has beenmade in the design ofmeta-waveplates for on-demand polarization transformation,
realized by numerical simulations and parameter sweep methodologies. However, due to the limited freedom in
these classical strategies, particular challenges arise from the emerging requirement formultiplex optical devices and
multidimensional manipulation of light, which urge for a large number of different nanostructures with great
polarization control capability. Here, we demonstrate a set of self-designed arbitrary wave plates with a high polari-
zation conversion efficiency. We combine Bayesian optimization and deep neural networks to design perfect half-
and quarter-waveplates based onmetallic nanostructures, which experimentally demonstrate excellent polarization
control functionalities with the conversion ratios of 85%and 90%.More broadly, we develop a comprehensive wave
plate database consisting of various metallic nanostructures with high polarization conversion efficiency, accom-
panying a flexible tuning of phase shifts (0–2π) and group delays (0–10 fs), and construct an achromatic metalens
based on this database. Owing to the versatility and excellent performance, our self-designed wave plates can pro-
mote the performance of multiplexed broadband metasurfaces and find potential applications in compact optical
devices and polarization division multiplexing optical communications. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.480845

1. INTRODUCTION

Polarization is an essential property of electromagnetic fields
that has been exploited in various domains, from sensing
[1], imaging [2,3], optical displays [4] to light–matter interac-
tion [5–7], quantum information processing [8,9], and nonlin-
ear optics [10–12]. Versatile manipulation of polarization and
its accurate characterization are therefore crucial for numerous
applications. Universal polarization manipulation is realized by
optical wave plates, which are typically made up of bulk ma-
terials and are dependent on the accumulation of the phase
difference between two orthogonally polarized waves during
their propagation. Thus, traditional polarization devices are
challenging for miniaturized and highly integrated on-chip
photonic systems. Over the past few decades, with the develop-
ment of advanced nanofabrication techniques, artificially engi-
neered photonic structures, including photonic crystals [13],
metamaterials [14], and plasmonic nanostructures [15], have
been widely used in tailoring light–matter interactions and un-
locking new device concepts. They provide an unprecedented
platform to design and to construct integrated optical devices,

which are capable of arbitrarily tailoring the wavefront and
polarization states of light within the subwavelength dimension
[16–18]. Based on the reasonable nanophotonic structure de-
sign, the effective regulation of light polarization state has been
realized in integrated planar optical devices, making great
progress in polarization imaging, sensing, communication,
and other applications [19–24].

In most cases, we encourage functional nanostructures to
achieve specific optical requirements, where the structure de-
sign is crucial. Inverse design is a basic and widely used method
to retrieve proper structures for the desired optical response
[25]. Generally, based on prior physical models and intuitions,
we can parameterize nanostructures and produce a design
space. Then, the optical polarization response corresponding
to each point in the design space can be obtained via numerical
simulations, such as the finite-difference time-domain (FDTD)
method or the finite element method (FEM), aiming to create a
structure database for the search of optimal structures with
desired optical polarization properties. There are two remaining
challenges in these schemes. First, they are insufficient without
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prior knowledge or scientific intuition as guidelines, which is,
however, difficult for designing complex nanostructures to
meet the requirement of multifunctional devices. Second,
the consumption of computing resources is approximately ex-
ponentially proportional to the dimension of the design space,
and thus the degree of freedom is limited to avoid the curse of
dimensionality. In sharp contrast to conventional design meth-
ods based on physical rules, artificial intelligence algorithms
have flourished in the design of optical devices [26], which
can spontaneously discover useful information from existing
data and establish the relation between input and output data
parameterized by tensors. Therefore, optical responses and
structures can be described with tensors by rational parameter-
ized strategies. Then, many useful artificial intelligence algo-
rithms can be transferred to the research of nanophotonics.
With a powerful generalization ability in a given design space,
artificial intelligence algorithms can expand the realm and
applicability of nanophotonics, such as spectral prediction,
ultra-fast pulse reconstruction, and structure inverse design,
and photonic band structure analysis [27–33]. Bayesian opti-
mization (BO) is a sequential design strategy for global optimi-
zation of functions. Due to the efficient parallel computing
property and independence of the continuity or derivability
of objective function, BO has been successfully applied to re-
verse design problems in science and engineering [34].

In this work, we used our self-designed Bayesian optimiza-
tion-net (BO-Net) to design and fabricate meta-waveplates with
a desired optical polarization response, where BO and deep neu-
ral networks (DNNs) are utilized simultaneously to optimize the
optical performance. We propose a general design method for
arbitrary functional wave plates and show the performance of
our fabricated half- and quarter-waveplates as a proof of concept,
achieving excellent polarization manipulation functionalities
with the polarization conversion ratio (PCR) of up to 90% in the
experimental measurement. PCR is defined as IRCP∕
�IRCP � ILCP�, where IRCP �ILCP� is the normalized intensity
of right-handed (left-handed) circularly polarized reflected light.
Moreover, the generated nanostructures with excellent polariza-
tion conversion capabilities constitute a valuable database, where
the phase shift can cover a full cycle (2π) and the group delay can
be tuned from 0 to 10 fs. An achromatic metalens is designed by
selecting elements with the required phase and group delay in
this database, and the achromatic focusing is confirmed using
FDTD simulations. In the following, we image electromagnetic
modes of fabricated nanostructures with cathodoluminescence
(CL) microscopy [35] and provide a general analysis of the
mechanism that leads to a high PCR based on Jones matrix for-
malism.Our results open the way to broadbandmanipulation of
polarization states and may serve as a general approach to the
design of advanced optical devices, such as broadband beam de-
flection [36], achromatic diffraction focusing imaging devices
[37,38], multifunctional orbital angular momentum generators
[39], and other dispersion devices [40].

2. BASIC PRINCIPLE AND SELF-DESIGNED
PLATFORM

Excellent control over polarization states can be achieved by
strong plasmonic resonance between metallic nanostructures

and incident light [41], thus allowing the construction of com-
pact and miniaturized wave plates. Therefore, we present a
practical platform consisting of a metal-insulator-metal
(MIM) unit cell [Fig. 1(a)], where metallic nanostructures
are located on the top of a silicon dioxide (SiO2) spacer and
a continuous bottom Au layer. The thickness of the SiO2 spacer
and the Au layer are 100 nm and 40 nm, respectively, and the
height of the nanostructures is 40 nm. The structure is para-
meterized as a 40 × 40 matrix, where 1 (0) represents a square
column of Au (air) with a size of 10 nm × 10 nm × 40 nm,
and the period along the x- and y-directions is fixed to
400 nm. The proposed platform makes for a stronger output
signal compared with the single-layer approach and is thus
more valuable to be optimized for applications.

Based on our platform, the BO-Net strategy is utilized to
retrieve optimal nanostructures [28], which can provide desired
polarization conversion functionality with high efficiency. As a
data-driven optimization strategy, an initial dataset, including
structure parameters and Jones matrices, needs to be prepared
in the beginning. Thus, 4000 samples are generated randomly
through the “needle drop” approach, which can balance the
accessible pattern diversity and accuracy of the nanofabrication.
Each unit cell consists of 4 Au bricks in random locations, de-
fined by 2 sets of coordinates of each brick’s rectangular diago-
nal vertex (x min, y min, x max, y max), and the minimum size
of the structures is set to 30 nm. Thus, location parameters of 4
bricks in one unit cell span a 16-dimensional parameter space,
described by a 4 × 4 matrix. Then, the numerical simulation is
performed to provide the corresponding reflection spectrum of
x∕y-polarized light. The Jones matrix can be extracted from the
simulation result, and the relation between an incident field
and a reflected field can be described as�
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As an example of what could be done, we design and exper-

imentally demonstrate efficient half-waveplates (HWPs) com-
posed of arbitrary-shape nanostructures, which can convert the
circular polarization state of light with a high polarization con-
version efficiency (PCE). The PCE is defined by

PCE �
��

E target
x

E target
y

���Er
x

Er
y

��
2

, (2)

where
�E target

x

E target
y

�
is the Jones vector of desired reflected light.

For this optimization target, it is straight forward to denote
the incident left-handed circularly polarized (LCP) and target
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As the starting point of the DNN, the structure matrix (a
40 × 40 matrix) and spectrum of randomly generated samples
constitute the initial dataset, which is divided into 3 groups:
80% for training, 10% for validation, and 10% for testing.
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Training data are used to train a functionalized deep neural
network for developing a relation between the structure geom-
etry and its optical response, validation data are used to select
the best model parameters, and the testing data are used to
evaluate the generalization ability of the model. The upper part
of Fig. 1(b) illustrates the DNN architecture, which includes
two components: convolution layers and dense layers.
Convolution layers aim to extract geometric features of the
structures, and dense layers are devoted to mapping these fea-
tures to reflection spectra. The optimization algorithm Adam
(adaptive moment estimation) with the learning rate of
5 × 10−4 is utilized to minimize the loss function, which is de-
fined as the mean square error (MSE) between the output spec-
trum of FDTD simulations and DNNs. After 500 epochs of
training, the mean square error of the obtained reflection spec-
tra is 8.89 × 10−4 on the training set and 2.53 × 10−3 on the
validation/testing set, which implies fairly high accuracy of
the results from DNNs. Compared with conventional numeri-
cal methods, DNNs can predict the characteristic reflection
spectrum through parallel tensor calculations without solving
Maxwell’s equations, thus greatly shortening computation time
and reducing the consumption of computational resources.
Therefore, the well-trained network can take the place of

FDTD methods to provide rapid predictions of reflection spec-
tra that can be further employed in BO (see Appendix A).

The desired structure can be readily obtained with an ob-
jective function mapping structure matrix to the corresponding
PCE averaged by wavelength. Nevertheless, the objective func-
tion is unavailable due to the enormous dimension (240×40) of
parametrized design space. Therefore, we simplify the design
space to a 16-dimensional parameter space spanned by four sets
of geometrical parameters of nanostructures. BO is performed
iteratively to approximate the objective function with an input
size of 16 and to reinforce DNNs to search for the optimal
structure with a higher PCE. As shown in the lower part of
Fig. 1(b), the optical response of the given nanostructures,
which is predicted by DNNs, accompanied with their structure
parameters, which are described by a 4 × 4 matrix, serves as an
input of BO in one generation. Then, the overall input, up to
the current generation, constitutes observations of the objective
function and can be further utilized to approximate with a 95%
confidence interval through Gaussian processes. The utility
function is the upper bound of the confidence interval, and
local maxima of this function yield recommended structures
for the next generation, which is termed the “next best guess.”
These structures and their optical response not only serve as an

Fig. 1. Schematic of the self-designed platform Bayesian optimization-net (BO-Net). (a) Left: the schematic of the self-designed waveplate,
consisting of a metal-insulator-metal (MIM) unit cell. Right: the binary matrix parameterization. The shape of the top nanostructures is described
by a 40 × 40 matrix, where 1 (0) represents a square column of Au (air) with a size of 10 nm × 10 nm × 40 nm. (b) The architecture of the deep
neural networks (DNNs) and the BO. The upper part displays the workflow of the DNNs, including two kinds of network layers. The convolution
layers extract the structure of the geometric features related to the optical properties. The dense layers are used to map these features to the response of
the reflection spectra. The lower part displays the workflow of the BO. The Bayesian statistical model estimates the predicted function with a 95%
confidence interval to approximate the objective function through Gaussian processes. The utility function can be extracted from the upper bound of
the 95% confidence interval. Based on the local maxima of the utility function (denoted by stars) in the whole design space, the probabilistic optimal
structures for the next generation can be recommended. (c) The schematic of the final generated nanostructures with the target optical response,
which can act as a unit cell.
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updated input for BO but also are recorded in a database for
advanced design. This process is iterated continuously and im-
proves the overall PCE of the whole database until the model
converges. Eventually, a vast number of different nanostruc-
tures with high PCE [Fig. 1(c)] can be generated straightway
via our well-trained model (see Appendix A).

As a cornerstone of our BO-Net, the accuracy and efficiency
of DNNs are examined by calculating the reflection spectrum
of a given nanostructure under the LCP planewave, with
FDTD-simulated results presented for comparison. The
DNN-calculated intensity of LCP, RCP, and total reflected
light is plotted in Fig. 2(a), together with FDTD-simulated re-
sults. The excellent agreement between the DNN result (solid
line) and the FDTD result (dashed line) demonstrates that the
reflection spectrum can be obtained via the DNN model with
convincing accuracy. Furthermore, the powerful parallel
computing capability of DNNs gives rise to an unprecedented
computing speed, which is over four orders of magnitude
higher than that of the FDTD method. Consequently, the op-
timization process can be greatly accelerated by using DNNs,
accompanied with a declined consumption of computational
resources.

Based on this framework, our design method is employed to
maximize the circular PCE of the HWPs by automatic elabo-
rate design of the nanostructures. The working wavelength is
set from 650 to 950 nm to avoid the Au absorption band. As

depicted earlier, 4000 random structures are generated, and
their reflection spectra are forecasted through DNNs in order
to create a priori data distribution. Then, BO is performed lit-
erally step by step to generate nanostructures with a higher
PCE. The optimal PCE of the HWPs at each iteration during
the optimization process is shown in Fig. 2(b). Importantly, our
design strategy exhibits high optimization efficiency, bringing
the PCE of the HWPs to around 80% within 10 generations of
iteration. The inset in Fig. 2(b) shows the PCE distributions of
the HWPs from the first 5 iterations, where the five-number
(the minimum, first quartile, median, third quartile, and the
maximum) summary of a set of PCE data is illustrated by
the box plot. As expected, the average PCE increases gradually
with the optimization process, which indicates that the PCE of
the HWPs in one generation is optimized simultaneously. Such
observation confirms that our design method is inclined to at-
tain a batch of functional HWPs instead of an individual op-
timal HWP, making it a more efficient approach for the design
of complex multi-functional polarization-control devices.

In Fig. 2(c), geometries of the representative nanostructure
generated by BO in the first 9 generations are depicted together
with their corresponding PCE spectrum. As anticipated, the
PCE is fairly low for the first generation. Then, the diversity
of geometry increases with exploration strategies of BO for
searching structures with a higher PCE. As the optimization
keeps processing, the PCE is progressively enhanced, and some

Fig. 2. Variation of the polarization conversion efficiency (PCE) during the optimization process. (a) The reflection spectrum of a given nano-
structure for the left-handed circularly polarized (LCP) planewave, calculated by DNNs (solid lines) and FDTD (dashed lines). The inset displays the
geometric morphology of the corresponding nanostructure. (b) The maximum of the PCE as a function of generations. The PCE (averaged by
wavelength) of each nanostructure generated during the optimization process is recorded as a function of generations (the number of iterations). The
inset shows the five-number (the minimum, first quartile, median, third quartile, and the maximum) summary of the PCE data in the first 5
generations. The vertical line through the box indicates the median, the whiskers from each quartile indicate the minimum or the maximum,
and the box indicates the value range of 50% PCE distribution. (c) The PCR spectrum of the representative nanostructures selected from the
first 9 generations, labeled from G1 to G9. The side panel displays the corresponding geometric morphology of G1–G9, in the order from bottom
to top.
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common features in the geometry of nanostructures emerge
gradually, such as the aspect ratio and the filling factor. In es-
sence, this variation trend indicates that our method can extract
valuable information from the existing data and develop a spe-
cialized inference model for estimating and evaluating the PCE
of given nanostructures.

3. FABRICATION AND MEASUREMENTS

We implement practical HWPs for polarization state control
according to the results of the aforementioned workflow.
First, to demonstrate the reliability and accuracy of our opti-
mization process, HWPs that consisted of selective nanostruc-
tures from different generations (labeled as stru1, stru2, stru3,
stru4, and stru5 in order of increase in generations) were fab-
ricated with a standard electron beam lithography (EBL) pro-
cess followed by a lift-off process (see Appendix D). Figure 3(a)
displays scanning electron microscope (SEM) images (FEI
Quanta 450 FEG) of the HWP unit cell with a 45°-tilted view.
The reflection spectrum of each sample under normally inci-
dent LCP light was measured in a reflected dark-field micro-
scope (HSI V3, CytoViva Co.) with a detection wavelength
that ranged from 650 to 950 nm and was normalized by
the substrate reflection spectrum (see Appendix D). As ex-
pected, there is a gradual rise in the PCE from stru1 to stru5

[Fig. 3(a)], signifying an increase in the PCE through the iter-
ative optimization process.

Then, four representative practical HWPs, comprising
nanostructures randomly selected from the optimized database,
were fabricated and tested by the same scheme. Measured re-
sults are shown in Fig. 3(b), where the side panel displays SEM
images of corresponding nanostructures. A striking feature is
that the measured PCR of each nanostructure approaches
98% and stays around 90% in a broad wavelength range.
Numerical simulations show a good agreement with experi-
mental results as the PCR of each structure keeps close to
100% from 650 to 950 nm (see Appendix B). The discrepancy
may be ascribed to the fabrication error and imperfect per-
formance of optical components, especially the broadband
quarter-waveplates (QWPs) and rotation errors during the
measurement, thereby resulting in non-ideal circularly polar-
ized incident light.

Our method can be directly generalized to the design of ar-
bitrary wave plates, thereby enabling the customization of
polarization states of reflected light. For the incident light,
which can be expressed by the normalized Jones vector�Ei

x
Ei
y

�
, the reflected light can be obtained from Eq. (1), includ-

ing the Jones matrix. The initial training set in the DNNs only

Fig. 3. Reflection measurement results and the characterization of the optimized database. (a) The measured PCE spectra of the representative
nanostructures from different generations in the half-waveplates (HWPs) design process, labeled as stru1, stru2, stru3, stru4, and stru5 in order of
increase in the generations. Side panel: SEM images of the corresponding nanostructures. (b), (c) The measured polarization conversion ratio (PCR)
spectra of eight randomly selected unit cells of the HWPs (b) and QWPs (c) from the optimized database. Side panel: SEM images of the cor-
responding structures. (d) The simulated phase shift of the reflected light, which is introduced by the nanostructures in the optimized database. Each
pixel corresponds to a nanostructure in the optimized database, the x coordinate implies the working wavelength of the element, the y coordinate
implies the introduced phase shift, and the color indicates the corresponding PCE at the working wavelength. (e) The PCE (averaged by wavelength)
versus the group delay for different nanostructures in the optimized database after filtering those with a PCE lower than 5%. Each dot represents a
nanostructure with a certain averaged PCE (x coordinate), group delay (y coordinate), and R2 (color bar). Group delay (defined as the slope of fitted
line) and R2 can be obtained by employing linear fitting to the phase shift spectra of a certain nanostructure from 650 to 950 nm. The group delay of
the nanostructures with over 40% PCE ranges from 0 to 10 fs, demonstrating the potential for constructing achromatic metalenses with both high
efficiencies and large numerical apertures. Scale bars, 100 nm.
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needs to be calculated once because the Jones matrix is constant
for a certain unit cell, which can greatly reduce the time con-
sumption of the optimization process. Therefore, to design de-
sired functional wave plates, we only need to optimize a certain
PCE based on the existing training dataset. As proof, we can get
a large number of QWPs by our method, which can completely
convert the incident linearly polarized light to RCP light. To
impart the desired polarization response, we employ the DNNs
to get the relation between the PCE and structure geometry
and utilize BO to optimize the structure for a higher PCE.

Four representative unit cells are selected from the opti-
mized result, which have PCEs higher than 80% and PCRs
close to 100%, as demonstrated by FDTD simulation. The
SEM images of the fabricated samples and measured reflection
spectra are shown in Fig. 3(c), where the highest PCR ap-
proaches 90%. It is worth noting that, albeit the bandwidth
of optimized nanostructures is designed to be 300 nm, they
possess good polarization conversion capability in a wider wave-
length range from 650 to 1500 nm. Moreover, to verify the
universality of our method, we designed eight different polari-
zation conversion devices to deal with other polarizations.
Within the designed bandwidth, the PCR is close to 100%,
showing the excellent performance. Overall, these results indi-
cate that our self-designed wave plates from the optimized data-
base possess an excellent capability of broadband polarization
state control. More information is shown in Appendix B.

Moreover, we extracted the phase shift introduced by nano-
structures within the optimized database by calculating the
phase of reflected RCP light [Fig. 3(d)]. Each pixel represents
a certain structure element in the optimized database, and the
color represents the magnitude of its CE at the corresponding
wavelength. We find that the phase shift can almost cover a
cycle from 0 to 2π over the whole working band (see
Appendix C). More intriguingly, this phase shift is determined
by the resonant interaction between the incident light and
nanostructures, which is fundamentally different from the
Pancharatnam–Berry (PB) phase. As a consequence, the reso-
nant phase and PB phase introduced by the nanostructure in
our database can be tuned independently, which can be applied
to achieve full and independent control of polarization channels
[42]. In a similar vein, the great potential of our nanostructures
in applications of achromatic devices is illustrated by the
dispersion relation of reflected RCP light [Fig. 3(e)]. Each
dot represents a structure element in the overall database, which
is developed during the whole optimization process, with the
x-y coordinates and color determined by the group delay, the
PCE, and the coefficient of determination (R2). The distribu-
tion of data points shows that the group delay of the reflected
light spans from 0 to 10 fs, and the maximum PCE at each
group delay mostly stays above 40%. This result indicates that
our nanostructures generated via deep neural networks can be
applied for constructing efficient broadband achromatic optical
devices [38].

4. DESIGN AND SIMULATION RESULTS OF
ACHROMATIC METALENS

To demonstrate the versatility of the optimized database for
constructing functional optical devices, an achromatic metalens

was designed with a numerical demo. Figures 4(a) and 4(b)
show the geometry of the metalens, which works at
λ � 800 nm with a 200 nm bandwidth and possesses a diam-
eter D � 24 μm and focal length F � 100 μm.

For an achromatic metalens accompanied with a polariza-
tion conversion function, a high PCE is required to get a fea-
sible efficiency, which can be done with the optimized database.
Besides, the group delay and phase of each element follows:

				 ∂φ�r�∂ω
−
∂φ�r � 0�

∂ω

				 � 1

c
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � F 2

p
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where ω, c, r, and F are the angular frequency, light speed,
radial coordinate, and focal length, respectively. The group de-
lay at the r � 0 is fixed to 3.14 fs. Then, elements in the data-
base are selected, both of which not only have a PCE higher
than 50% and an R2 higher than 0.98 but also satisfy Eq. (3).
The required relative group delay at the radius of a perfect ach-
romatic metalens is compared with the realized relative group
delay implemented by selected structures [Fig. 4(c)], which
shows a good match (see Appendix C).

With selected elements located at fixed positions, we modu-
late their relative phase at the center wavelength by rotation
around its center, i.e., adjusting their PB phase. Considering
Eq. (A1) and the phase relation between the incident LCP light
and reflected RCP light, the rotation angle of each element at
center frequency ωc follows

θ�r,ωc� � −
ωc

2c
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � F 2

p
− F �: (4)

The realized relative phase by rotated elements at different
wavelengths is plotted as dotted lines in Fig. 4(d), with the rel-
ative phase of a perfect achromatic metalens plotted as solid
lines. The realized relative phase coincides with the ideal rela-
tive phase profile at the center wavelength 800 nm and shows a
good agreement at 700 and 900 nm wavelength.

Furthermore, we performed a numerical simulation of the
performance of our designed achromatic metalens using
FDTD. The focal lengths at different wavelengths were ob-
tained by acquiring the intensity profile of reflected RCP light
along the propagating direction (z-axis), as shown in Fig. 4(e).
The white dashed line indicates the focal plane corresponding
to an illumination wavelength of 800 nm. Due to the limitation
of computation resources, the size of the designed metalens is
finite (D � 24 μm). Therefore, there is only a small number of
elements to map the 2π change over the lens radius, which re-
sults in a shorter focal length in simulation than the de-
signed one.

In Fig. 4(f ), we also acquired the focal spot profile at the
focal plane corresponding to an illumination wavelength of
800 nm [white dashed line in Fig. 4(e)]. The focal spots at dif-
ferent wavelengths are diffraction-limited and maintain their
profile for the entire working wavelength range from 700 to
900 nm. This demo of achromatic metalens demonstrates that
a large number of different structures with high PCE in the
optimized database can be easily transferred to the design of
complex functional devices such as achromatic metalenses.
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5. CATHODOLUMINESCENCE MICROSCOPY
AND THEORETICAL ANALYSIS

To elucidate the underlying physical basis for the broadband
polarization state conversion of designed wave plates, we fur-
ther imaged the polarization-dependent electromagnetic modes
that hide in the optical near-field of the nanostructure by using
CP-resolved CL microscopy (Gatan MonoCL Plus [43,44]).
More information is shown in Appendix D. According to
the reciprocity theorem between electron beam excitation
and plane wave illumination [45], the CP-resolved CL emission
is generally related to the z component of the electric field
under CP light illumination. Therefore, the distribution of
the near-field electromagnetic modes can be well imitated by
the CL mapping, which is acquired by scanning the sample
with a focused electron beam and recording corresponding
CL emissions. Figures 5(a) and 5(b) display a series of bandpass
LCP CL images of fabricated HWPs and QWPs (2 HWPs:
struB and struD; 2 QWPs: struIII and struIV) with a center
wavelength at 510 and 794 nm. At 794 nm, the distribution
of CL hot-spots can be clearly distinguished and shows a chiral
feature at corners and edges, which reveals a chiral electromag-
netic mode caused by a strong polarization-dependent interac-
tion between nanostructures and incident light. Conversely, the
intensity of the CL emission is homogeneously distributed on
Au nanostructures at 510 nm, and the overall intensity is much
lower than that at 794 nm, thus indicating a much weaker
interaction between nanostructures and incident light. This

result, which has a good agreement with the simulated chiral
near-field distribution, suggests that the strong polarization-
dependent interaction and the chiral optical near field can be
the mutual origin of the strong capability of polarization state
control that our nanostructures exhibit from 650 to 950 nm
(see Appendix B).

In order to analyze the detail of high PCE theoretically, the
polarization state of output light can be depicted by the Stokes
parameter S3, which is defined as the normalized intensity dif-
ference between RCP and LCP components. In the circum-
stance of the complete transformation of circular polarization
of perfect HWPs, the reflection matrix in Eq. (1) has to satisfy
the following conditions:

Rxx � eiφ, Rxy � Ryx � 0, Ryy � ei�φ�π�: (5)

To get a perfect QWP with a 45° major axis (with respect to
the x-axis), the reflection matrix has to satisfy

Rxx � Ryy � eiφ, Rxy � Ryx � ei�φ−
π
2�: (6)

To compare with the ideal condition, the reflection matrix
of 4 representative nanostructures (2 HWPs and 2 QWPs) and
S3 are both calculated via numerical simulations, and the am-
plitude profile of each matrix element and S3 are illustrated in
Figs. 5(c) and 5(d). For the HWPs, it is observed that the am-
plitude of Rxx and Ryy stays around 1 over the working band,
according to Eq. (1), indicating that the nanostructure can

Fig. 4. Designed achromatic metalens with a polarization conversion function. (a) The schematic of an achromatic metalens designed at the
center wavelength of 800 nm with a bandwidth of 200 nm. (b) The magnified view of the metallic nanostructures of a region of the metalens. (c) The
required and realized relative group delay from the center to the edge of the achromatic metalens. (d) The realized phase profile (dot lines) and
the ideal phase profile (solid lines) at wavelengths of 700 nm, 800 nm, and 900 nm. (e) The simulated intensity distributions in the linear scale of the
different wavelengths. The white dashed lines pass through the center of the focal spots in the case of λ � 800 nm. (f ) The intensity profiles along
the white dashed lines of (e).
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preserve the linear polarization without dissipation and deflec-
tion. Additionally, S3 varies abruptly from −1 to 1 at around
600 nm and keeps uniform after 650 nm, confirming an ex-
cellent efficiency of our HWPs for the polarization state trans-
formation. As for the QWPs, S3 equals 0 from 450 to 540 nm
since the interaction between the incident light and nanostruc-
tures is extremely weak, and the incident polarization is pre-
served. Nevertheless, S3 changes to −1 after 650 nm,
ensuring a nearly perfect RCP light we can get.

The phases of the dominant matrix elements as a function of
wavelengths are shown in Figs. 5(e) and 5(f ), which are close to
0 from 450 to 510 nm, implying a negligible interaction be-
tween the nanostructure and incident light. However, they be-
come non-zero in a wavelength range from 650 to 950 nm, and
the phase difference between two matrix elements is approxi-
mately equal to π (HWPs) and π∕2 (QWPs), satisfying the
condition in Eqs. (4) and (5). It is worth noting that the sharp
dip of the amplitude profile and the dramatical oscillation of
the phase between 520 and 650 nm result from the strong res-
onant interaction between the metallic nanostructure and

incident light. These facts demonstrate that the reflection
matrix of the nanostructure is consistent with that of the perfect
HWPs and the QWPs, leading to a complete transformation of
polarization states.

Accordingly, our analysis provides important insights into
the strong polarization-dependent interaction between the in-
cident radiation filed and metallic nanostructures, which is an
integral aspect of polarization state manipulation. It is also im-
portant to point out here that although our BO-Net presets no
physical rule as a guideline for the optimization process, it ex-
plores and learns characteristic features of structures with a high
PCE from the randomly generated database independently.
Hence, based on hidden common features, it can generate a
larger number of desired nanostructures with a great physical
interpretability, which can be generally analyzed by the Jones
matrix. Due to the absence of specific guidelines in the opti-
mization process, the physical mechanism of the great polari-
zation-state-control capability can be various in detail among
generated nanostructures, which may expand scopes in the
realm of optical metamaterials and nanophotonics.

Fig. 5. Bandpass left-handed circularly polarized (LCP) cathodoluminescence (CL) images and reflection matrix. (a), (b) Bandpass LCPCL images
(scalebar � 50 nm) of 4 fabricated nanostructures (2 HWPs: struB and struD and 2 QWPs: struIII and struIV) with a center wavelength at 510 nm
and 794 nm. The color implies the intensity of the CL emissions, and the black arrow denotes the left-handed circular polarization. The profile of the
nanostructures is outlined by dashed lines. At 794 nm, the distribution of the hot spots shows a chiral feature, implying a strong near-field interaction
between the nanostructures and the incident light field. However, hot spots can barely be observed at 510 nm out of the working band. (c), (d) The
amplitude of each matrix element (solid lines) and S3 (shadow region) as a function of wavelengths. Rxy is equal to Ryx due to the reciprocity theorem.
For the HWPs, Rxx and Ryy stay around 1 over the working band. For the QWPs, S3 changes to −1 after 650 nm, ensuring a nearly perfect RCP light.
(e), (f ) The phase of the dominantmatrix elements as a function of wavelengths. The absolute phase difference betweenRxx andRyy (Ryx) is also plotted
as green dashed lines. The horizontal gray line serves as a guide to the eye. For the HWPs, the phase difference stays around π in the working band, and
for the QWPs, the phase difference stays around π∕2 in the working band, both showing good agreement with numerical predictions.
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6. CONCLUSION

In conclusion, we have utilized BO-Net to design and exper-
imentally demonstrated arbitrary wave plates with excellent
capability to control the polarization state of light. The reflec-
tion measurement confirms that the fabricated HWPs and
QWPs allow for a broadband polarization ratio over 90% across
a 300-nm-wide bandwidth (650–950 nm). Through the CL
microscopy with deep-subwavelength resolution, the underly-
ing physics of the polarization-dependent interaction between
the nanostructure and incident light emerges, which is also
theoretically analyzed with the Jones matrix. Our proposed
method and structures for polarization state control provide
a platform to shed light on the polarization-dependent inter-
action between light and materials and to inspire the design
of nanophotonic devices. Notably, due to the powerful parallel
computing capability, the presented BO-Net can generate plen-
tiful desired nanostructures while using limited computing re-
sources, which can be applied to develop a practical database for
advanced design. The phase shift of structures in our database
can be combined with other phase-addressing mechanisms,
opening an avenue for the multidimensional manipulation
of light and multiplexed broadband optical devices. On a more
fundamental level, compared to the conventional design strat-
egies based on preset physical rules, our method exhibits a
higher efficiency and degree of freedom, which can implement
previously inaccessible complicated tasks. Therefore, we envi-
sion that this method will become an efficient tool for optimi-
zation in several scientific areas, including optics, acoustics,
electronics, and engineering physics.

APPENDIX A: SELF-DESIGNED PLATFORM
BO-NET

1. Architecture and Parameters of the Deep Neural
Network
The architecture of the deep neural network is schematically
shown in Fig. 6 with detailed parameters listed in Table 1.
Our network is composed of convolution layers and dense

layers. Convolution layers aim to extract geometric features
of structures. In the extraction network, we use five block
layers, and each contains two convolution layers followed by
max-pooling layers to compress the input structure matrix of
size 64 × 64 into a compact feature vector of dimension
2048. Then, the dense layer is devoted to mapping feature vec-
tors to the reflection spectrum. The total number of parameters
of the network is about 5,000,000.

2. Training Process
The initial dataset is composed of 4000 randomly generated
structures through the “needle drop” approach [46], by adding
4 Au bricks in random locations, and the minimum size of the
structure is set to 30 nm. Then, the corresponding reflection
spectrum of each structure is acquired by performing numerical
simulations (FDTD, finite-difference time-domain). The opti-
mization algorithm Adam (adaptive moment estimation) with
the learning rate of 5 × 10−4 is utilized to minimize the loss
function, which is defined as the mean square error (MSE) be-
tween outputs of FDTD simulations (x) and DNNs �x̂�,

Loss � 10,000 ×
1

N

XN
i�0

�x − x̂�2: (A1)

Training curves for the network are shown in Fig. 7. After
around 200 epochs of training, the network converged to a
point that the MSE loss became stable, indicating that the net-
work can predict the reflection spectrum of nanostructures with
convincing accuracy.

3. Fundamental Principles of Bayesian Optimization
Bayesian optimization is a sequential design strategy for global
optimization of functions. Generally, BO works by construct-
ing a posterior distribution of functions (Gaussian process) that
best describes the objective function we want to optimize.
Bayesian optimization has two main processes, the prior func-
tion (objective function) and the acquisition function (utility
function).

Fig. 6. Schematic diagram of the deep neural network.

Research Article Vol. 11, No. 5 / May 2023 / Photonics Research 703



In this paper, the prior function is implemented by Gaussian
process regression, owing to its flexibility and tractability.
Assuming that our observations are (xi, yi) (i � 1, 2,…, n),
f �x� is drawn from a Gaussian process prior,
y ∼N �f �x�, v	, where v is the variance noise. The prior and

the observations induce a posterior over the function, which
gives a predictive mean function μ�x� and marginal variance
function σ2�x�.

Acquisition function must be defined for determining what
the next query point should be, which mainly includes expected

Table 1. Definition and Parameters of Networksa

Network Layer Size-in Size-out Kernel Stride Padding

Input Input structure None 40 × 40 × 1 None None None
Cov layers Block1 Conv_1 (Conv2d) 40 × 40 × 1 40 × 40 × 32 3 × 3 1 × 1 1 × 1

Conv_2 (Conv2d) 40 × 40 × 32 40 × 40 × 32 3 × 3 1 × 1 1 × 1
Pool_1 (MaxPool2d) 40 × 40 × 32 20 × 20 × 32 3 2 1

Cov layers Block2 Conv_3 (Conv2d) 20 × 20 × 32 20 × 20 × 64 3 × 3 1 × 1 1 × 1
Conv_4 (Conv2d) 20 × 20 × 64 20 × 20 × 64 3 × 3 1 × 1 1 × 1
Pool_2 (MaxPool2d) 20 × 20 × 64 10 × 10 × 64 3 2 1

Cov layers Block3 Conv_5 (Conv2d) 10 × 10 × 64 10 × 10 × 128 3 × 3 1 × 1 1 × 1
Conv_6 (Conv2d) 10 × 10 × 128 10 × 10 × 128 3 × 3 1 × 1 1 × 1
Pool_3 (MaxPool2d) 10 × 10 × 128 5 × 5 × 128 3 2 1

Cov layers Block4 Conv_7 (Conv2d) 5 × 5 × 128 5 × 5 × 256 3 × 3 1 × 1 1 × 1
Conv_8 (Conv2d) 5 × 5 × 128 5 × 5 × 256 3 × 3 1 × 1 1 × 1
Pool_4 (MaxPool2d) 5 × 5 × 256 3 × 3 × 256 3 2 1

Cov layers Block5 Conv_9 (Conv2d) 3 × 3 × 256 3 × 3 × 512 3 × 3 1 × 1 1 × 1
Conv_10 (Conv2d) 3 × 3 × 512 3 × 3 × 512 3 × 3 1 × 1 1 × 1
Pool_5 (MaxPool2d) 3 × 3 × 512 2 × 2 × 512 3 2 1

Dense layers Flatten 2 × 2 × 512 1 × 2048 None None None
Dense layer 1 × 2048 1 × 256 None None None
Dense layer 1 × 256 1 × 61 None None None

a“Conv” refers to the convolutional layer followed by the batch normalization layer, “Pool” refers to the max pooling layer, and “Dense” refers to the fully connected
layer.

Fig. 7. Loss evolution during the training process on both the training set and the validation set. (a), (b) The loss evolution of the LCP and the
RCP spectrum for the half-wave plates (HWPs) design. (c), (d) The loss evolution of the LCP and the RCP spectrum for the quarter-wave plates
(QWPs) design.
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improvement (EI), probability of improvement (PI), and upper
confidence bound (UCB) [47]. In this paper, EI is chosen to be
the acquisition function a�x�, which depends on previous ob-
servations and Gaussian process hyperparameters. Let xb be the
current best value and

Z � μ�x� − f �xb�
σ

,

EI�x� � �μ�x� − f �xb�	Φ�Z � � σ�x�Φ�Z �. (A2)

Φ�Z � is the cumulative distribution function of the stan-
dard normal. By maximizing the expected improvement, the
next point xn � arg max EI�x� is determined for the next
iteration.

As the optimization process is iterated continuously, the
number of observations grows, the posterior distribution im-
proves, and the algorithm becomes more certain of which re-
gions in the parameter space are worth exploring and which are
not. Eventually, the final best value in parameter space can be
generated straightway via our well-trained Bayesian model.

Fig. 8. Variation of the PCE during the optimization process of the
QWPs. The PCE (averaged by wavelength) of each nanostructure gen-
erated during the optimization process is recorded as a function of
generations (the number of iterations). The inset shows the five-
number (the minimum, first quartile, median, third quartile, and the
maximum) summary of the PCE data in the first 5 generations. The
vertical line through the box indicates the median, the whiskers from
each quartile indicate the minimum or the maximum, and the box
indicates the value range of 50% PCE distribution.

Fig. 9. Examples of the optimized nanostructures in our database. (a)–(f ) The reflection spectrum of a given nanostructure (inset) under a
normally incident LCP planewave, calculated by the DNNs (solid lines) and the FDTD simulations (dashed lines). (a)–(d) These nanostructures
are fabricated and measured, and the results are shown in the main text.
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Fig. 10. Examples of the optimized nanostructures in our database. The reflection spectrum of a given nanostructure (inset) under a normally
incident x-polarized light, calculated by the DNNs (solid lines) and the FDTD simulations (dashed lines). (a)–(d) The nanostructures are fabricated
and measured, and the results are shown in the main text.

Fig. 11. Simulated broadband spectrum of the optimized nanostructures in our database. (a), (b) The reflection spectrum of a given HWP (inset)
under a normally incident LCP planewave, calculated by FDTD simulations from 450 to 2000 nm. (c), (d) The reflection of a given QWP (inset)
under a normally incident x-polarized light, calculated by FDTD simulations.
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4. Optimization Process of QWPs
The optimal PCE of the QWPs at each iteration during the
optimization process is shown in Fig. 8. As expected, the
PCE increases gradually with the optimization process, and
the maximum PCE of the QWPs approaches 80%. The

inset in Fig. 8 shows PCE distributions of QWPs from the first
5 iterations, where the five-number (the minimum, first quar-
tile, median, third quartile, and the maximum) summary of a
set of PCE data is illustrated by the box plot.

Fig. 12. (a)–(h) Reflection spectra of a given optimized nanostructure (as shown in the insets) under a normally incident polarized planewave,
calculated by the FDTD simulations. The In (short for input) indicates the Jones vector of the incident polarized planewave, and the Out (short for
output) indicates the Jones vector of the objective reflected polarized planewave. The PCE and the PCR are profiled by red and blue solid lines,
respectively.
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APPENDIX B: NUMERICAL SIMULATION
RESULTS

In order to evaluate the performance of optimized nanostruc-
tures, we show PCR and PCE spectra of some QWPs (Fig. 9)
and HWPs (Fig. 10). These results show a good agreement
with experiment results. Considering the low-loss band of gold
nanostructures, we fixed the optimization waveband from 650
to 950 nm in the beginning of our design. However, broadband
simulation results show our optimized HWPs/QWPs with
good polarization conversion capability at a larger wavelength

range from 650 to 1500 nm (Fig. 11). Moreover, we complete
the design of eight different polarization conversion devices to
deal with other polarizations. The simulation results show the
excellent performance in the designed bandwidth (Fig. 12). To
elucidate the underlying physical basis for the broadband
polarization state conversion of designed waveplates, we calcu-
late the chiral near-field distribution (Fig. 13). These results
suggest that the strong polarization-dependent interaction
and the chiral optical near filed can be the mutual origin of
the strong capability of polarization state control that our nano-
structures exhibit from 650 to 950 nm.

APPENDIX C: ACHROMATIC DEVICES

1. Dispersion Engineering of Metalens
Consider the achromatic metalens, the relative phase provided
by the metalens elements with respect to the center follows

φ�r,ω� � −
ω

c
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � F 2

p
− F � � φ�0,ω�, (C1)

where ω, c, r, and F are the angular frequency, light speed,
radial coordinate, and focal length, respectively (Fig. 14).
This spatial- and frequency-dependent phase profile indicates
that at a given r, the metalens provides different transverse
wavevector kr � ∂φ�r,ω�

∂r so that different wavelengths are de-
flected by the same angle. To achieve achromatic focusing
within a given bandwidthΔω around ωd , the first-order deriva-
tive term of φ�r,ω�, which is group delay and typically of the
order of femtoseconds in the visible, needs to satisfy [38]

∂φ
∂ω

� −
1

c
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � F 2

p
− F� � ∂φ�r � 0�

∂ω
: (C2)

The relative group delay of a structure located at the radius
relative to the one at the center can be defined by

Relative group delay �
				 ∂φ∂ω −

∂φ�r � 0�
∂ω

				
� 1

c
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � F 2

p
− F�: (C3)

Therefore, the variation range of the relative group delay
around ωd , relying on attainable optical elements, limits the
maximum radius of the achromatic metalens, i.e., numerical
aperture, which is crucial for the performance and efficiency
of practical metalens.

Fig. 13. Simulated electric field distribution of the metallic nano-
structure under a normally incident LCP planewave with a wavelength
at 510 nm and 794 nm, respectively. Corresponding experimental re-
sults are shown in the main text.

Fig. 14. Schematic of an achromatic metalens. The metalens is de-
signed to provide spatially dependent group delays such that wave
packets from different locations arrive simultaneously at the focus.
The yellow line shows the spherical wavefront.

Fig. 15. Group delay of the metallic nanostructure. The group delay (∂φ∕∂ω) is obtained by linearly fitting the phase shift at λ � 800 nm with a
300 nm bandwidth.
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To implement an efficient achromatic metalens, the
optical element database of the metalens needs to meet the re-
quirements of high polarization conversion rate, full phase
modulation, linear phase response, and large variation range of
group delay simultaneously. As the Fig. 3(e) in the manuscript
shows, our database of optical nanostructures has great poten-
tial in constructing achromatic metalenses.

2. Group Delay of Metallic Nanostructures
In order to obtain the group delay of nanostructures, we process
linear fitting to the phase shift spectra from 650 to 950 nm.
Two fitting cases are shown in Fig. 15, where the slope repre-
sents the corresponding group delay and R2 represents the co-
efficient of determination.

3. Multidimensional Manipulation of Metallic
Nanostructures
The phase shift of optimized database can almost cover a cycle
from 0 to 2π over the whole working band. Some examples of
HWPs are shown in Fig. 16, which shows the corresponding
geometric morphology of nanostructures with target phase shift
at different wavelengths.

APPENDIX D: EXPERIMENTS

1. Device Fabrication
The samples were fabricated by using the standard thin-film
deposition, electron-beam lithography (EBL), and lift-off
techniques. First, a 2-nm-Ti layer and a 50-nm-Au layer were
deposited on a silicon substrate through electron beam evapo-
ration. Then, a 100-nm-thick SiO2 spacer layer was developed
with chemical vapor deposition. After spin-coating positive re-
sist (Mirco Chem PMMA A2 950), designed structures were
patterned in the scanning electron microscope (SEM, FEI
Quanta 450 FEG) under the control of the Nano Pattern
Generation System (NPGS) module. Next, the 2 nm Ti as
the adhesion layer and 40 nm Au were deposited by electron
beam evaporator (DE400DHL, DE Technology). Finally, met-
allic nanostructures were formed by the lift-off process.

2. Reflection Measurements of LCP/RCP Light
All of the spectra were acquired by a commercial dark-field mi-
croscope (HSI V3, CytoViva Co.) in addition to linear polar-
izers and quarter-wave plates in the collection optical path for
distinguishing LCP or RCP light. Under illumination of nor-
mally incident LCP∕x-polarized light, the reflection spectra of
nanostructures were calibrated and normalized by the substrate
reflection spectrum.

3. Cathodoluminescence (CL) Microscopy
CL measurements were performed by a CL detection system
(Gatan MonoCL4 Plus) mounted on an SEM (FEI Quanta
450 FEG) [48]. As shown in Fig. 17, a focused 30 kV electron
beam acted as the excitation source and stimulated metallic
nanostructures. Afterward, generated CL emissions were
collected by a parabolic mirror, resolved into an LCP/RCP
component with a combination of linear polarizers and quar-
ter-wave plates, and ultimately detected by a photomultiplier
[49]. CL images at specific wavelength were achieved by using
a 510 nm (794 nm) bandpass filter.

Funding. National Key Research and Development
Program of China (2020YFA0211300); National Natural
Science Foundation of China (12027807, 62225501); PKU-
Baidu Fund Project (2020BD023); High-performance
Computing Platform of Peking University.

Fig. 16. Examples of the self-designed HWPs for different wavelengths and the phase shift with a relatively high PCE.

Fig. 17. Schematic of the CL microscopy. The emissions passing
through the optical path were acquired by a highly-sensitive photo-
multiplier tube (PMT) (HSPMT, 160–930 nm). Locating the fast axis
of the quarter-wave plate by�45° with respect to the polarization axis
of the linear polarizer can selectively extract the LCP and the RCP
components. CL images with specific wavelength were acquired by
applying a bandpass filter in the optical path.
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