[1] Kurzweil R[M]. Singularity near(2011).
[3] Shen L, Wu H, Zhao C et al. Distributed curvature sensing based on a bending loss-resistant ring-core fiber[J]. Photonics Research, 8, 165-174(2020).
[4] Sui N B, Xu T C, Wang Q et al[J]. Recent research progress of fine polarization maintaining fibers for FOG Optical Fiber & Electric Cable and Their Applications, 2021, 8-11.
[5] Yu L, Guo H L, Lu G Q et al. Production and performance of heat resistant optical fiber[J]. Optical Communication Technology, 38, 8-11(2014).
[6] Shao C Y, Yu C L, Hu L L. Radiation-resistant active fibers for space applications[J]. Chinese Journal of Lasers, 47, 0500014(2020).
[7] Hill K O, Fujii Y, Johnson D C et al. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication[J]. Applied Physics Letters, 32, 647-649(1978).
[8] Meltz G, Morey W W, Glenn W H. Formation of Bragg gratings in optical fibers by a transverse holographic method[J]. Optics Letters, 14, 823-825(1989).
[9] Askins C G, Tsai T E, Williams G M et al. Fiber Bragg reflectors prepared by a single excimer pulse[J]. Optics Letters, 17, 833-835(1992).
[10] Hill K O, Malo B, Bilodeau F et al. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask[J]. Applied Physics Letters, 62, 1035-1037(1993).
[11] Anderson D Z, Mizrahi V, Erdogan T et al. Phase-mask method for volume manufacturing of fiber phase gratings. [C]∥Conference on Optical Fiber Communication/International Conference on Integrated Optics and Optical Fiber Communication, February 21, 1993, San Jose, California. Washington, D.C.: OSA, PD16(1993).
[12] Lemaire P J, Atkins R M, Mizrahi V et al. High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres[J]. Electronics Letters, 29, 1191-1193(1993).
[13] Dong L, Archambault J L, Reekie L et al. Single pulse Bragg gratings written during fibre drawing[J]. Electronics Letters, 29, 1577-1578(1993).
[14] Askins C G, Putman M A, Williams G M et al. Stepped-wavelength optical-fiber Bragg grating arrays fabricated in line on a draw tower[J]. Optics Letters, 19, 147-149(1994).
[15] Erdogan T. Fiber grating spectra[J]. Journal of Lightwave Technology, 15, 1277-1294(1997).
[16] Zhang P, Cerecedo-Núñez H, Qi B et al. Optical time-domain reflectometry interrogation of multiplexing low-reflectance Bragg-grating-based sensor system[J]. Optical Engineering, 42, 1597-1603(2003).
[17] Martinez A, Dubov M, Khrushchev I et al. Direct writing of fibre Bragg gratings by femtosecond laser[J]. Electronics Letters, 40, 1170-1172(2004).
[18] Wikszak E, Burghoff J, Will M et al. Recording of fiber Bragg gratings with femtosecond pulses using a “point by point” technique. [C]∥Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, May 16-21, San Francisco, California. Washington, D.C.: OSA, CThM7(2004).
[19] General Administration of Quality Supervision, Inspection, Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China,. National Standard (Recommended) of the People’(2008).
[20] Cusano A, Cutolo A, Albert J. Fiber Bragg grating sensors: recent advancements, industrial applications and market exploitation[M]. Sharjah: Bentham Science Publishers(2011).
[21] Yang M H, Rao Y J, Jin W et al[M]. Optical fiber sensor network: devices and technology(2018).
[22] Lefèvre H C. Potpourri of comments about the fiber optic gyro for its 40th anniversary, and how fascinating it was and it still is![J]. Proceedings of SPIE, 9852, 985203(2016).
[23] Lefevre H C. The fiber-optic gyroscope[M]. London: Artech house, 99-105(2014).
[24] Sagnac G. Sur la preuve de la réalité de l’éther lumineux par l’expérience de l’interférographe tournant[J]. Comptes Rendus de l’Académie des Sciences, 157, 1410-1413(1913).
[25] Ezekiel S, Arditty H J. Fiber-optic rotation sensors and related technologies[M]. ∥Springer series in optical sciences. Heidelberg: Springer, 32(1982).
[26] Eric U. Fiber optic gyros: 10th anniversary conf[M]. Cambdrige: SPIE, 719(1987).
[27] Ezekiel S, Udd E. Fiber optic gyros: 15th anniversary conf[M]. Cambdrige: SPIE, 1585(1992).
[28] Udd E, Lefevre H C, Hotate K. Fiber optic gyros: 20th anniversary conf[M]. Cambdrige: SPIE, 2837(1996).
[29] Paturel Y, Honthaas J, Lefèvre H et al. One nautical mile per month fog-based strapdown inertial navigation system: a dream already within reach?[J]. Gyroscopy and Navigation, 5, 1-8(2014).
[30] Lefèvre H C. The fiber-optic gyroscope: challenges to become the ultimate rotation-sensing technology[J]. Optical Fiber Technology, 19, 828-832(2013).
[31] Guattari F, Chouvin S, Moluçon C et al. A simple optical technique to compensate for excess RIN in a fiber-optic gyroscope[C]∥2014 DGON Inertial Sensors and Systems (ISS), September 16-17, 2014, Karlsruhe, Germany., 1-14(2014).
[32] Ma H, Yan Y, Wang L et al. Laser frequency noise induced error in resonant fiber optic gyro due to an intermodulation effect[J]. Optics Express, 23, 25474-25486(2015).
[33] Sanders G A, Sanders S J, Strandjord L K et al. Fiber optic gyro development at Honeywell[J]. Proceedings of SPIE, 9852, 985207(2016).
[34] de ToldiE, LefèvreH, GuattariF, et al. First steps for a giant FOG: searching for the limits[C]∥2017 DGON Inertial Sensors and Systems (ISS), September 19-20, 2017, Karlsruhe, Germany. New York: IEEE Press, 2017: 1- 14.
[35] Guattari F, de Toldi E, Garcia R F et al. Fiber optic gyroscope for 6-component planetary seismology[J]. Proceedings of SPIE, 1118, 2867-2884(2019).
[36] Jaroszewicz L R, Kurzych A, Krajewski Z et al. The fiber-optic rotational seismograph-laboratory tests and field application[J]. Sensors, 19, 2699(2019).
[37] Yang Y H, Yan H, Li S et al. Estimation of gyro bias drift due to distributed polarization cross coupling in the fiber coil[J]. Optics Express, 27, 10247-10257(2019).
[38] Morris T A. Digonnet M J F. Discrete model of backscattering drift in fiber optic gyroscopes[J]. Journal of Lightwave Technology, 38, 1981-1987(2020).
[39] Sanders G A, Taranta A A, Narayanan C et al. Hollow-core resonator fiber optic gyroscope using nodeless anti-resonant fiber[J]. Optics Letters, 46, 46-49(2021).
[40] Meng Z, Chen W, Wang J F et al. Research progress of fiber optic hydrophone technology[J]. Laser & Optoelectronics Progress, 58, 1306009(2021).
[41] Meng Z, Hu Y M, Xiong S D et al. All polarization maintaining fiber hydrophone array[J]. Chinese Journal of Lasers, 29, 415-417(2002).
[42] Ni M, Hu Y M, Meng Z et al. Study on fiber optic hydrophone unit[J]. Applied Acoustics, 22, 1-7(2003).
[43] Meng Z, Hu Y M, Ni M et al. Development of a 32-element fiber optic hydrophone system[J]. Proceedings of SPIE, 5589, 114-119(2004).
[44] Xiong S. Research on the fiber optic vector hydrophone[D]. Changsha: National University of Defense Technology(2003).
[45] Xiong S D, Luo H, Hu Y M et al. Research on interferometric polarization maintaining fiber optic micro-vibration vector sensor[J]. Chinese Journal of Lasers, 31, 843-847(2004).
[46] Hu Y M, Hu Z L, Luo H et al. Recent progress toward fiber optic hydrophone research, application and commercialization in China[J]. Proceedings of SPIE, 8421, 183-187(2012).
[47] Rao W. Study on key techniques of fiber optic vector hydrophone for high resolution seafloor strata detection[D]. Changsha: National University of Defense Technology(2012).
[48] Cao C Y, Xiong S D, Yao Q et al. Performance of a 400 km interrogated fiber optics hydrophone array[J]. Proceedings of SPIE, 9157, 91579B(2014).
[49] Meng Z, Chen W, Wang J F et al. Recent progress in fiber-optic hydrophones[J]. Photonic Sensors, 11, 109-122(2021).
[50] Hao X Z, Zhang H Q, Wei C L et al. Sea trial for fiber-optic hydrophone array used in marine geophysical exploration[J]. Journal of Tropical Oceanography, 37, 93-98(2018).
[51] Gu H C, Huang J B, Yao G F et al. A 64-element fiber laser hydrophone flank array[J]. Proceedings of SPIE, 11763, 117639G(2021).
[52] Lu B, Wu B Y, Gu J F et al. Distributed optical fiber hydrophone based on Φ-OTDR and its field test[J]. Optics Express, 29, 3147-3162(2021).
[53] Dong Y K, Zhang H Y, Chen L et al. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair[J]. Applied Optics, 51, 1229-1235(2012).
[54] Dominguez-Lopez A, Soto M A, Martin-Lopez S et al. Resolving 1 million sensing points in an optimized differential time-domain Brillouin sensor[J]. Optics Letters, 42, 1903-1906(2017).
[55] Lee M W, Stiller B, Hauden J et al. Differential phase-shift-keying technique-based Brillouin echo-distributed sensing[J]. IEEE Photonics Technology Letters, 24, 79-81(2012).
[56] Hotate K, Tanaka M. Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique[J]. IEEE Photonics Technology Letters, 14, 179-181(2002).
[57] Zadok A, Antman Y, Primerov N et al. Random-access distributed fiber sensing[J]. Laser & Photonics Reviews, 6, L1-L5(2012).
[58] Ba D X, Li Y, Yan J L et al. Phase-coded Brillouin optical correlation domain analysis with 2-mm resolution based on phase-shift keying[J]. Optics Express, 27, 36197-36205(2019).
[59] Peled Y, Motil A, Tur M. Fast Brillouin optical time domain analysis for dynamic sensing[J]. Optics Express, 20, 8584-8591(2012).
[60] Chu Q, Wang B, Wang H et al. Fast Brillouin optical time-domain analysis using frequency-agile and compressed sensing[J]. Optics Letters, 45, 4365-4368(2020).
[61] Zhou D, Dong Y, Wang B et al. Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement[J]. Light, Science & Applications, 7, 32(2018).
[62] Soto M A. Bolognini G, di Pasquale F, et al. Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range[J]. Optics Letters, 35, 259-261(2010).
[63] Dong Y K, Chen L, Bao X Y. Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs[J]. Journal of Lightwave Technology, 30, 1161-1167(2012).
[64] Soto M A, Ramírez J A, Thévenaz L. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration[J]. Nature Communications, 7, 10870(2016).
[65] Dong Y, Teng L, Tong P et al. High-sensitivity distributed transverse load sensor with an elliptical-core fiber based on Brillouin dynamic gratings[J]. Optics Letters, 40, 5003-5006(2015).
[66] Teng L, Zhang H, Dong Y et al. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings[J]. Optics Letters, 41, 4413-4416(2016).
[67] Kim Y H, Kwon H, Kim J et al. Distributed measurement of hydrostatic pressure based on Brillouin dynamic grating in polarization maintaining fibers[J]. Optics Express, 24, 21399-21406(2016).
[68] Bashan G, Diamandi H H, London Y et al. Optomechanical time-domain reflectometry[J]. Nature Communications, 9, 2991(2018).
[69] Chow D M, Yang Z, Soto M A et al. Distributed forward Brillouin sensor based on local light phase recovery[J]. Nature Communications, 9, 2990(2018).
[70] Pang C, Hua Z J, Zhou D W et al. Opto-mechanical time-domain analysis based on coherent forward stimulated Brillouin scattering probing[J]. Optica, 7, 176-184(2020).
[71] Rao Y J, Wang Z N, Wu H J et al. Recent advances in phase-sensitive optical time domain reflectometry (Ф-OTDR)[J]. Photonic Sensors, 11, 1-30(2021).
[72] Xie K L, Rao Y J, Ran Z L. Distributed optical fiber sensing system based of Rayleigh scattering light Φ-OTDR using single-mode fiber laser with high power and narrow linewidth[J]. Acta Optica Sinica, 28, 569-572(2008).
[73] Rao Y J, Luo J, Ran Z L et al. Long-distance fiber-optic Φ-OTDR intrusion sensing system[J]. Proceedings of SPIE, 7503, 75031O(2009).
[74] Pan Z Q, Liang K Z, Ye Q et al. Phase-sensitive OTDR system based on digital coherent detection[C]∥2011 Asia Communications and Photonics Conference and Exhibition (ACP), November 13-16, 2011, Shanghai, China., 1-6(2011).
[75] Masoudi A, Belal M, Newson T P. A distributed optical fibre dynamic strain sensor based on phase-OTDR[J]. Measurement Science and Technology, 24, 085204(2013).
[76] Peng F, Wu H, Jia X H et al. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines[J]. Optics Express, 22, 13804-13810(2014).
[78] Wang Z N, Zeng J J, Li J et al. Ultra-long phase-sensitive OTDR with hybrid distributed amplification[J]. Optics Letters, 39, 5866-5869(2014).
[79] Peng F, Duan N, Rao Y J et al. Real-time position and speed monitoring of trains using phase-sensitive OTDR[J]. IEEE Photonics Technology Letters, 26, 2055-2057(2014).
[80] Hartog A. -10-27[2021-05-09]. https:∥patents.google.com/patent/US9170149B2/en?oq=9170149.(2015).
[81] Wang Z N, Zhang L, Wang S et al. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection[J]. Optics Express, 24, 853-858(2016).
[82] Jousset P, Reinsch T, Ryberg T et al. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features[J]. Nature Communications, 9, 2509(2018).
[83] Wang Z N, Zhang B, Xiong J et al. Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR[J]. IEEE Internet of Things Journal, 6, 6117-6124(2019).
[84] Williams E F. Fernández-Ruiz M R, Magalhaes R, et al. Distributed sensing of microseisms and teleseisms with submarine dark fibers[J]. Nature Communications, 10, 5778(2019).
[85] Wu H J, Liu X R, Xiao Y et al. A dynamic time sequence recognition and knowledge mining method based on the hidden Markov models (HMMs) for pipeline safety monitoring with Φ-OTDR[J]. Journal of Lightwave Technology, 37, 4991-5000(2019).
[86] PetroChina. Top ten scientific. 2020-01-10)[2021-05-08][EB/OL]. http:∥www.cnpc.com.cn/cnpc/sdkjjz/202001/5836516fb34a48e590ebff3caf0afdd6.shtml.(2019).
[87] Xiong J, Wang Z N, Wu Y et al. Long-distance distributed acoustic sensing utilizing negative frequency band[J]. Optics Express, 28, 35844-35856(2020).
[88] Guan H J, Han B, Han Z W et al. High performance DAS-based optical fiber hydrophone. [C]∥Asia Communications and Photonics Conference/International Conference on Information Photonics and Optical Communications 2020 (ACP/IPOC), October 24-27, 2020, Beijing. Washington, D.C.: OSA, M4A, 100(2020).
[89] Yao J Z, Han B, Jiang X L et al. Cladding softened fiber for sensitivity enhancement of distributed acoustic sensing[J]. Optics Express, 29, 8216-8222(2021).
[90] Han B, Guan H J, Yao J Z et al. Distributed acoustic sensing with sensitivity-enhanced optical cable[J]. IEEE Sensors Journal, 21, 4644-4651(2021).
[91] Eickhoff W, Ulrich R. Optical frequency domain reflectometry in single-mode fiber[J]. Applied Physics Letters, 39, 693-695(1981).
[92] Uttam D, Culshaw B. Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique[J]. Journal of Lightwave Technology, 3, 971-977(1985).
[93] Venkatesh S, Sorin W V. Phase noise considerations in coherent optical FMCW reflectometry[J]. Journal of Lightwave Technology, 11, 1694-1700(1993).
[94] Passy R. Gisin N, von der Weid J P, et al. Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources[J]. Journal of Lightwave Technology, 12, 1622-1630(1994).
[95] Chinn S R, Swanson E A, Fujimoto J G. Optical coherence tomography using a frequency-tunable optical source[J]. Optics Letters, 22, 340-342(1997).
[96] Huber R, Wojtkowski M, Taira K et al. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles[J]. Optics Express, 13, 3513-3528(2005).
[97] Ito F, Fan X Y, Koshikiya Y. Long-range coherent OFDR with light source phase noise compensation[J]. Journal of Lightwave Technology, 30, 1015-1024(2012).
[98] Ding Z, Yao X S, Liu T et al. Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals[J]. Optics Express, 20, 28319-28329(2012).
[99] Zhou D P, Qin Z G, Li W H et al. Distributed vibration sensing with time-resolved optical frequency-domain reflectometry[J]. Optics Express, 20, 13138-13145(2012).
[100] Li W H, Chen L, Bao X Y. Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry[J]. Optics Communications, 311, 26-32(2013).
[101] Liu Q, Fan X, He Z. Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range[J]. Optics Express, 23, 25988-25995(2015).
[102] Wang S, Fan X, Liu Q et al. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR[J]. Optics Express, 23, 33301-33309(2015).
[103] Wang B, Fan X Y, Wang S et al. Millimeter-resolution long-range OFDR using ultra-linearly 100 GHz-swept optical source realized by injection-locking technique and cascaded FWM process[J]. Optics Express, 25, 3514-3524(2017).
[104] Li J, Gan J, Zhang Z et al. High spatial resolution distributed fiber strain sensor based on phase-OFDR[J]. Optics Express, 25, 27913-27922(2017).
[105] Li H, Liu Q W, Chen D et al. High-spatial-resolution fiber-optic distributed acoustic sensor based on Φ-OFDR with enhanced crosstalk suppression[J]. Optics Letters, 45, 563-566(2020).
[106] Hoo Y L, Jin W, Ho H L et al. Evanescent wave gas sensing using microstructure fibre[C]∥Technical Digest. CLEO/Pacific Rim 2001.4th Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.01TH8557), July 15-19, 2001, Chiba, Japan., 8-9(2001).
[107] Hoo Y L, Jin W, Shi C et al. Design and modeling of a photonic crystal fiber gas sensor[J]. Applied Optics, 42, 3509-3515(2003).
[108] Hoo Y L, Jin W, Ho H L et al. Gas diffusion measurement using hollow-core photonic bandgap fiber[J]. Sensors and Actuators B: Chemical, 105, 183-186(2005).
[109] Ritari T, Tuominen J, Ludvigsen H et al. Gas sensing using air-guiding photonic bandgap fibers[J]. Optics Express, 12, 4080-4087(2004).
[110] Bao H, Hong Y, Jin W et al. Modeling and performance evaluation of in-line Fabry-Perot photothermal gas sensors with hollow-core optical fibers[J]. Optics Express, 28, 5423-5435(2020).
[111] Jin W, Bao H H, Zhao P C et al. Recent advances in spectroscopic gas sensing with micro/nano-structured optical fibers[J]. Photonic Sensors, 11, 141-157(2021).
[112] Hensley C J, Broaddus D H, Schaffer C B et al. Photonic band-gap fiber gas cell fabricated using femtosecond micromachining[J]. Optics Express, 15, 6690-6695(2007).
[113] Hoo Y L, Liu S J, Ho H L et al. Fast response microstructured optical fiber methane sensor with multiple side-openings[J]. IEEE Photonics Technology Letters, 22, 296-298(2010).
[114] Jin W, Cao Y, Yang F et al. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range[J]. Nature Communications, 6, 6767(2015).
[115] Lin Y C, Jin W, Yang F et al. Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre[J]. Scientific Reports, 6, 1-12(2016).
[116] Lin Y, Liu F, He X et al. Distributed gas sensing with optical fibre photothermal interferometry[J]. Optics Express, 25, 31568-31585(2017).
[117] Yang F, Jin W, Lin Y C et al. Hollow-core microstructured optical fiber gas sensors[J]. Journal of Lightwave Technology, 35, 3413-3424(2017).
[118] Qi Y, Yang F, Lin Y C et al. Nanowaveguide enhanced photothermal interferometry spectroscopy[J]. Journal of Lightwave Technology, 35, 5267-5275(2017).
[119] Yang F, Jin W. All-fiber hydrogen sensor based on stimulated Raman gain spectroscopy with a 1550-nm hollow-core fiber[J]. Proceedings of SPIE, 10323, 103233C(2017).
[120] Yang F, Zhao Y, Qi Y et al. Towards label-free distributed fiber hydrogen sensor with stimulated Raman spectroscopy[J]. Optics Express, 27, 12869-12882(2019).
[121] Qi Y, Zhao Y, Bao H H et al. Nanofiber enhanced stimulated Raman spectroscopy for ultra-fast, ultra-sensitive hydrogen detection with ultra-wide dynamic range[J]. Optica, 6, 570-576(2019).
[122] Bao H H, Jin W, Miao Y P et al. Laser-induced dispersion with stimulated Raman scattering in gas-filled optical fiber[J]. Journal of Lightwave Technology, 37, 2120-2125(2019).
[123] Zhao P, Zhao Y, Bao H et al. Mode-phase-difference photothermal spectroscopy for gas detection with an anti-resonant hollow-core optical fiber[J]. Nature Communications, 11, 847(2020).
[124] Chen F F, Jiang S L, Jin W et al. Ethane detection with mid-infrared hollow-core fiber photothermal spectroscopy[J]. Optics Express, 28, 38115-38126(2020).
[125] Zhao Y, Qi Y, Ho H L et al. Photoacoustic Brillouin spectroscopy of gas-filled anti-resonant hollow-core optical fibers[J]. Optica, 8, 532-538(2021).
[126] Gander M J. MacPherson W N, McBride R, et al. Bend measurement using Bragg gratings in multicore fibre[J]. Electronics Letters, 36, 120-121(2000).
[127] Flockhart G M. MacPherson W N, Barton J S, et al. Two-axis bend measurement with Bragg gratings in multicore optical fiber[J]. Optics Letters, 28, 387-389(2003).
[129] Miller G A, Askins C G, Friebele E J. Shape sensing using distributed fiber optic strain measurements[J]. Proceedings of SPIE, 5502, 528-531(2004).
[130] Zhang L W, Qian J W, Shen L Y et al. FBG sensor devices for spatial shape detection of intelligent colonoscope[C]∥IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04.2004, April 26-May 1, 2004, New Orleans, LA, USA., 834-840(2004).
[131] Duncan R G, Froggatt M E, Kreger S T et al. High-accuracy fiber-optic shape sensing[J]. Proceedings of SPIE, 6530, 65301S(2007).
[132] Moore J P, Rogge M D. Shape sensing using multi-core fiber optic cable and parametric curve solutions[J]. Optics Express, 20, 2967-2973(2012).
[133] Westbrook P S, Feder K S, Kremp T et al. Integrated optical fiber shape sensor modules based on twisted multicore fiber grating arrays[J]. Proceedings of SPIE, 8938, 89380H(2014).
[134] Zhao Z, Soto M A, Tang M et al. Distributed shape sensing using Brillouin scattering in multi-core fibers[J]. Optics Express, 24, 25211-25223(2016).
[135] Westbrook P S, Kremp T, Feder K S et al. Continuous multicore optical fiber grating arrays for distributed sensing applications[J]. Journal of Lightwave Technology, 35, 1248-1252(2017).
[136] Gherlone M, Cerracchio P, Mattone M. Shape sensing methods: review and experimental comparison on a wing-shaped plate[J]. Progress in Aerospace Sciences, 99, 14-26(2018).
[137] Floris I, Adam J M, Calderòn P A et al. Measurement uncertainty of 7-core multicore fiber shape sensors[J]. Proceedings of SPIE, 11199, 111992Q(2019).
[138] Floris I, Madrigal J, Sales S et al. Experimental study of the influence of FBG length on optical multicore shape sensors performance[C]∥Asia Communications and Photonics Conference (ACPC) 2019, November 2-5, 2019, Chengdu, China.(2019).
[139] Barrera D, Madrigal J, Delepine-Lesoille S et al. Multicore optical fiber shape sensors suitable for use under gamma radiation[J]. Optics Express, 27, 29026-29033(2019).
[140] Galloway K C, Chen Y, Templeton E et al. Fiber optic shape sensing for soft robotics[J]. Soft Robotics, 6, 671-684(2019).
[141] Khan F, Denasi A, Barrera D et al. Multi-core optical fibers with Bragg gratings as shape sensor for flexible medical instruments[J]. IEEE Sensors Journal, 19, 5878-5884(2019).
[142] 2020-05-21)[2021-05-24][EB/OL]. https:∥news.bjx.com.cn/html/20200521/1074323.shtml.(2020).
[143] Liu T Y, Wang Z W, Li Z et al. Advance of fiber optic sensors application for coal mine methane and fire hazards monitoring[J]. Shandong Science, 32, 110-117(2019).
[144] Reid J, Labrie D. Second-harmonic detection with tunable diode lasers: comparison of experiment and theory[J]. Applied Physics B, 26, 203-210(1981).
[145] Hu T K. The trial of optical fiber temperature sensor in China’s coal mine[J]. Safety in Coal Mines, 17, 34-36(1986).
[146] Uehara K, Tai H. Remote detection of methane with a 1.66-microm diode laser[J]. Applied Optics, 31, 809-814(1992).
[147] Stewart G, Culshaw B, Tandy C et al. Multipoint fibre sensors for trace gas monitoring using derivative spectroscopy[J]. Proceedings of SPIE, 3483, 132-136(1998).
[148] Zhao L. Development of gas optical fiber sensing instrument for coal mine application[D]. Wuhan: Wuhan University of Technology(2009).
[149] Li Y F, Wei Y B, Zhao Y J et al. Fiber laser gas sensor with self-diagnosis function. C]∥National Conference on Optoelectronics and Quantum Electronics, March 18, 2011, Beijing, China. Beijing: Chinese Institute of Electronics, 108-110(2011).
[150] Sun Y J, Liu T Y, Ma J P et al. Optical fiber integrated monitoring and warning system for coal mine safety production. C]∥2013 Coal Technology and Equipment Development Forum Proceedings, October 21, 2013, Beijing, China. Beijing: China Nationak Coal Association, 64-74(2013).
[151] Li Y F, Wei Y B, Wang X S et al. Experimental study on laser methane sensor and its reliability. C]∥International Conference on Optical Fiber and Optoelectronic Sensor and its Safety Application (OFSIS2015), January 22, 2015, Jinnan, China. Jinan: Department of Science & Technology of Shandong Province, 97-101(2015).
[152] Li Y F, Chang L, Zhao Y J et al. A fiber optic methane sensor based on wavelength adaptive vertical cavity surface emitting laser without thermoelectric cooler[J]. Measurement, 79, 211-215(2016).
[153] Chang L. Laser methane sensor for coal mine based on pressure compensation[J]. Safety in Coal Mines, 47, 126-128(2016).
[154] -12-29)[2021-05-07]. https:∥www.mem.gov.cn/gk/gwgg/tz_01/201701/t20170103_235131.shtml.(2016).
[155] Ni J S, Chang J, Liu T Y et al. Fiber methane gas sensor and its application in methane outburst prediction in coal mine[C]∥2008 1st Asia-Pacific Optical Fiber Sensors Conference, November 7-9, 2008, Chengdu, China., 1-4(2008).
[156] Chen R G, Wang C X. Application of optic fiber sensing technique in coal mine electric parameters measuring[J]. Coal Mine Automation, 24, 32-34(1998).
[157] Iseki T, Tai H, Kimura K. A portable remote methane sensor using a tunable diode laser[J]. Measurement Science and Technology, 11, 594-602(2000).
[158] Chai J. Basic study on crack and deflection of rock by optical fiber sensing technology[D]. Xi’an: Xi’an University of Science and Technology(2003).
[159] Lytkine A, Jaeger W, Tulip J. Multi-species gas detection with long-wavelength VCSEL[J]. Proceedings of SPIE, 5594, 155-163(2004).
[160] Zhao Y J, Wang C, Liu T Y et al. Application in methane extraction of fiber methane monitoring system based on spectral absorption[J]. Spectroscopy and Spectral Analysis, 30, 2857-2860(2010).
[161] Zhao Y J, Chang J, Wang C et al. Research of fiber couple parameters monitoring system of methane and temperature[J]. Chinese Journal of Lasers, 37, 3070-3074(2010).
[162] Li Y F, Liu T Y, Wei Y B et al. -03-13[P]. device based on VCSEL: CN102967580A.(2013).
[163] Hou M Y, Wang J Q, Zhao L[J]. Real-time determination method of distributed temperature measuring optical fiber tail position in goaf China Science and Technology Information, 2016, 70-72.
[164] Wang L. Research and design of wireless laser methane sensor in coal mine safety monitoring system[J]. Coal Technology, 38, 154-158(2019).
[165] Liu T Y, Ning Y N, Jin G X, system: CN108375555A[P] et al. -08-07(2018).
[166] Wang X S. Accelerated test of working stability of mine-used laser methane sensor[J]. Industry and Mine Automation, 45, 45-49(2019).
[167] Zhang Y Q[J]. Oil is still a strategic energy that needs to be developed vigorously Energy Review, 2019, 1.
[168] Shi X F, Cai Z Q, Li Z[J]. The optical fiber distributed temperature measurement system and its application in petroleum well logging Petroleum Instruments, 2002, 20-23, 62.
[169] Xu Y L. Wide application of optical fiber temperature measuring system in oil well monitoring. C]∥Proceedings of the 11th Annual Meeting of China Petroleum and Chemical Automation, June 1, 2012, Huangshan, China. Beijing: China Petroleum and Chemical Industry Association, 498-501(2012).
[170] Zhang Y Q, Du Y X, Wu G W et al. Research and application of distributed optical fiber temperature monitoring system[J]. China Petroleum Machinery, 31, 6-8, 10(2003).
[171] Liu L C. Application of real-time distributed optical fiber temperature measurement in SAGD[J]. Journal of Shengli College China University of Petroleum, 24, 5-7(2010).
[172] Lin F Z. The fiber optic monitoring technology research of casing strain and formation pressure in production and injection well[D]. Daqing: Northeast Petroleum University(2012).
[173] Duan S N, Pan Y, Lu Z W. Oilfield application and development trend of optical fiber temperature and pressure dynamic monitoring technology[J]. Technology Supervision in Petroleum Industry, 32, 49-52(2016).
[174] from dream to reality[EB/OL]. -08-14)[2021-05-24]. https:∥www.sohu.com/a/333807092_120058319.(2019).
[175] -11-04)[2021-05-24]. http:∥www.cnpc.com.cn/cnpc/cpzx/201911/61025b7f1f944a2a8d66d 464167d079a.shtml.(2019).
[176] -03-03)[2021-05-24]. http:∥news.cnpc.com.cn/system/2021/03/03/030025852.shtml.(2021).
[177] Wang N B, Duan S N, Pan Y et al. Research on fluid production profile analysis of optical fiber test in steam huff well. C]∥2018IFEDC International Conference on Oil & Gas Field Exploration and Development, September 18, 2018, Xi’an, Shaanxi, China. [S.l.: s.n.], 9(2018).
[178] Uma Kumari C R, Samiappan D, Kumar R et al. Development and experimental validation of a Nuttall apodized fiber Bragg Grating sensor with a hydrophobic polymer coating suitable for monitoring sea surface temperature[J]. Optical Fiber Technology, 56, 102176(2020).
[179] Jin W, Li X, Wu S et al. Highly sensitive temperature sensing probes based on liquid cladding elliptical micro/nanofibers[J]. Optics Express, 28, 20062-20073(2020).
[180] Sudarsono S, Yudoyono G, Prajitno G et al. Detection of salinity in the process of heating seawater by using a directional coupler of the multimode plastic optical fiber with a plane mirror as a reflector[J]. Journal of Optics, 49, 48-52(2020).
[181] Wu S H, Jin W, Bi W H et al. A robust salinity sensor based on encapsulated long-period grating in microfiber[J]. Optoelectronics Letters, 16, 418-422(2020).
[182] Wang L, Wang Y J, Wang J F et al. A high spatial resolution FBG sensor array for measuring ocean temperature and depth[J]. Photonic Sensors, 10, 57-66(2020).
[183] Chen L S. Reaserch on sea overflow petroleim detection method based on long period fiber grating[D]. Qinhuangdao: Yanshan University(2015).
[184] Tan A L. Study on fiber optic spectroscopy detecting method for petroleum pollutants in water[D]. Qinhuangdao: Yanshan University(2012).
[185] Lin Y F, Yang J Y, Dong X Y. Heavy metal ions sensor based on signal-to-noise ratio measurement of FBG[J]. Journal of Optoelectronics·Laser, 27, 704-708(2016).
[186] Bi W H, Chen J G, Zhang S et al. Study on the influence factors of the concentration of heavy metals by spectrophotometry[J]. Acta Physica Sinica, 66, 149-156(2017).
[187] Guo Z, Gao K, Yang H et al. 20-mm-diameter interferometric hydrophone towed array based on fiber Bragg gratings[J]. Acta Optica Sinica, 39, 1106003(2019).
[188] Wang W R, Pei Y Y, Ye L Y et al. High-sensitivity cuboid interferometric fiber-optic hydrophone based on planar rectangular film sensing[J]. Sensors, 20, 6422(2020).
[189] Zhong Z X, Duan J M, Zhang H et al. Design of fiber grating water flow direction sensor[J]. Water Resources and Hydropower Engineering, 51, 63-69(2020).
[190] Lü J J, Zhang Q, Liu Y L. Developing trend and coping strategies about high sensitive electromagnetic sensor of the sea battlefield[J]. Computer Measurement & Control, 23, 3574-3576(2015).
[191] Zhang W T, Huang W Z, Li F. High-resolution fiber Bragg grating sensor and its applications of geophysical exploration, seismic observation and marine engineering[J]. Opto-Electronic Engineering, 45, 94-108(2018).
[192] -12-03)[2021-05-24]. http:∥capital.people.com.cn/n1/2020/1203/c405954-31953773.html.(2020).
[193] Nagy B, Farmer J D, Bui Q M et al. Statistical basis for predicting technological progress[J]. PLoS One, 8, e52669(2013).