• Acta Optica Sinica
  • Vol. 42, Issue 1, 0100001 (2022)
Libo Yuan1、*, Weijun Tong2, Shan Jiang3, Yuanhong Yang4, Zhou Meng5, Yongkang Dong6, Yunjiang Rao7, Zuyuan He8, Wei Jin9, Tongyu Liu10, Qilin Zou11, and Weihong Bi12
Author Affiliations
  • 1Photonics Research Center, School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
  • 2State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Yangtze Optical Fiber and Cable Joint Stock Limited Company (YOFC), Wuhan, Hubei 430074, China
  • 3Wuhan Ligong Guangke Co. Ltd., Wuhan, Hubei 430000, China
  • 4School of Instrument Science and Opto-Electronic Engineering, Beihang University, Beijing 100191, China
  • 5School of Meteorology & Oceanography, National University of Defense Technology, Changsha, Hunan 410000, China;
  • 6National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
  • 7Fiber Optics Research Center, Key Laboratory of Optical Fiber Sensing and Communications, Ministry of Education, School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
  • 8State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
  • 9Department of Electrical Engineering, Hong Kong Polytechnic University, Hong Kong 999077, China
  • 10The Key Laboratory of Optical Fiber Sensing Technology of Shandong Province, Laser Research Institute of Shandong Academy of Sciences, Qilu Technology University (Shandong Academy of Sciences), Jinan, Shandong 250103, China
  • 11Beijing Perception Technology Co., Ltd., Beijing 100085, China
  • 12School of Information Science and Engineering, Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, Hebei 0 66004, China
  • show less
    DOI: 10.3788/AOS202242.0100001 Cite this Article Set citation alerts
    Libo Yuan, Weijun Tong, Shan Jiang, Yuanhong Yang, Zhou Meng, Yongkang Dong, Yunjiang Rao, Zuyuan He, Wei Jin, Tongyu Liu, Qilin Zou, Weihong Bi. Road Map of Fiber Optic Sensor Technology in China[J]. Acta Optica Sinica, 2022, 42(1): 0100001 Copy Citation Text show less
    References

    [1] Kurzweil R[M]. Singularity near(2011).

    [3] Shen L, Wu H, Zhao C et al. Distributed curvature sensing based on a bending loss-resistant ring-core fiber[J]. Photonics Research, 8, 165-174(2020).

    [4] Sui N B, Xu T C, Wang Q et al[J]. Recent research progress of fine polarization maintaining fibers for FOG Optical Fiber & Electric Cable and Their Applications, 2021, 8-11.

    [5] Yu L, Guo H L, Lu G Q et al. Production and performance of heat resistant optical fiber[J]. Optical Communication Technology, 38, 8-11(2014).

    [6] Shao C Y, Yu C L, Hu L L. Radiation-resistant active fibers for space applications[J]. Chinese Journal of Lasers, 47, 0500014(2020).

    [7] Hill K O, Fujii Y, Johnson D C et al. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication[J]. Applied Physics Letters, 32, 647-649(1978).

    [8] Meltz G, Morey W W, Glenn W H. Formation of Bragg gratings in optical fibers by a transverse holographic method[J]. Optics Letters, 14, 823-825(1989).

    [9] Askins C G, Tsai T E, Williams G M et al. Fiber Bragg reflectors prepared by a single excimer pulse[J]. Optics Letters, 17, 833-835(1992).

    [10] Hill K O, Malo B, Bilodeau F et al. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask[J]. Applied Physics Letters, 62, 1035-1037(1993).

    [11] Anderson D Z, Mizrahi V, Erdogan T et al. Phase-mask method for volume manufacturing of fiber phase gratings. [C]∥Conference on Optical Fiber Communication/International Conference on Integrated Optics and Optical Fiber Communication, February 21, 1993, San Jose, California. Washington, D.C.: OSA, PD16(1993).

    [12] Lemaire P J, Atkins R M, Mizrahi V et al. High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres[J]. Electronics Letters, 29, 1191-1193(1993).

    [13] Dong L, Archambault J L, Reekie L et al. Single pulse Bragg gratings written during fibre drawing[J]. Electronics Letters, 29, 1577-1578(1993).

    [14] Askins C G, Putman M A, Williams G M et al. Stepped-wavelength optical-fiber Bragg grating arrays fabricated in line on a draw tower[J]. Optics Letters, 19, 147-149(1994).

    [15] Erdogan T. Fiber grating spectra[J]. Journal of Lightwave Technology, 15, 1277-1294(1997).

    [16] Zhang P, Cerecedo-Núñez H, Qi B et al. Optical time-domain reflectometry interrogation of multiplexing low-reflectance Bragg-grating-based sensor system[J]. Optical Engineering, 42, 1597-1603(2003).

    [17] Martinez A, Dubov M, Khrushchev I et al. Direct writing of fibre Bragg gratings by femtosecond laser[J]. Electronics Letters, 40, 1170-1172(2004).

    [18] Wikszak E, Burghoff J, Will M et al. Recording of fiber Bragg gratings with femtosecond pulses using a “point by point” technique. [C]∥Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, May 16-21, San Francisco, California. Washington, D.C.: OSA, CThM7(2004).

    [19] General Administration of Quality Supervision, Inspection, Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China,. National Standard (Recommended) of the People’(2008).

    [20] Cusano A, Cutolo A, Albert J. Fiber Bragg grating sensors: recent advancements, industrial applications and market exploitation[M]. Sharjah: Bentham Science Publishers(2011).

    [21] Yang M H, Rao Y J, Jin W et al[M]. Optical fiber sensor network: devices and technology(2018).

    [22] Lefèvre H C. Potpourri of comments about the fiber optic gyro for its 40th anniversary, and how fascinating it was and it still is![J]. Proceedings of SPIE, 9852, 985203(2016).

    [23] Lefevre H C. The fiber-optic gyroscope[M]. London: Artech house, 99-105(2014).

    [24] Sagnac G. Sur la preuve de la réalité de l’éther lumineux par l’expérience de l’interférographe tournant[J]. Comptes Rendus de l’Académie des Sciences, 157, 1410-1413(1913).

    [25] Ezekiel S, Arditty H J. Fiber-optic rotation sensors and related technologies[M]. ∥Springer series in optical sciences. Heidelberg: Springer, 32(1982).

    [26] Eric U. Fiber optic gyros: 10th anniversary conf[M]. Cambdrige: SPIE, 719(1987).

    [27] Ezekiel S, Udd E. Fiber optic gyros: 15th anniversary conf[M]. Cambdrige: SPIE, 1585(1992).

    [28] Udd E, Lefevre H C, Hotate K. Fiber optic gyros: 20th anniversary conf[M]. Cambdrige: SPIE, 2837(1996).

    [29] Paturel Y, Honthaas J, Lefèvre H et al. One nautical mile per month fog-based strapdown inertial navigation system: a dream already within reach?[J]. Gyroscopy and Navigation, 5, 1-8(2014).

    [30] Lefèvre H C. The fiber-optic gyroscope: challenges to become the ultimate rotation-sensing technology[J]. Optical Fiber Technology, 19, 828-832(2013).

    [31] Guattari F, Chouvin S, Moluçon C et al. A simple optical technique to compensate for excess RIN in a fiber-optic gyroscope[C]∥2014 DGON Inertial Sensors and Systems (ISS), September 16-17, 2014, Karlsruhe, Germany., 1-14(2014).

    [32] Ma H, Yan Y, Wang L et al. Laser frequency noise induced error in resonant fiber optic gyro due to an intermodulation effect[J]. Optics Express, 23, 25474-25486(2015).

    [33] Sanders G A, Sanders S J, Strandjord L K et al. Fiber optic gyro development at Honeywell[J]. Proceedings of SPIE, 9852, 985207(2016).

    [34] de ToldiE, LefèvreH, GuattariF, et al. First steps for a giant FOG: searching for the limits[C]∥2017 DGON Inertial Sensors and Systems (ISS), September 19-20, 2017, Karlsruhe, Germany. New York: IEEE Press, 2017: 1- 14.

    [35] Guattari F, de Toldi E, Garcia R F et al. Fiber optic gyroscope for 6-component planetary seismology[J]. Proceedings of SPIE, 1118, 2867-2884(2019).

    [36] Jaroszewicz L R, Kurzych A, Krajewski Z et al. The fiber-optic rotational seismograph-laboratory tests and field application[J]. Sensors, 19, 2699(2019).

    [37] Yang Y H, Yan H, Li S et al. Estimation of gyro bias drift due to distributed polarization cross coupling in the fiber coil[J]. Optics Express, 27, 10247-10257(2019).

    [38] Morris T A. Digonnet M J F. Discrete model of backscattering drift in fiber optic gyroscopes[J]. Journal of Lightwave Technology, 38, 1981-1987(2020).

    [39] Sanders G A, Taranta A A, Narayanan C et al. Hollow-core resonator fiber optic gyroscope using nodeless anti-resonant fiber[J]. Optics Letters, 46, 46-49(2021).

    [40] Meng Z, Chen W, Wang J F et al. Research progress of fiber optic hydrophone technology[J]. Laser & Optoelectronics Progress, 58, 1306009(2021).

    [41] Meng Z, Hu Y M, Xiong S D et al. All polarization maintaining fiber hydrophone array[J]. Chinese Journal of Lasers, 29, 415-417(2002).

    [42] Ni M, Hu Y M, Meng Z et al. Study on fiber optic hydrophone unit[J]. Applied Acoustics, 22, 1-7(2003).

    [43] Meng Z, Hu Y M, Ni M et al. Development of a 32-element fiber optic hydrophone system[J]. Proceedings of SPIE, 5589, 114-119(2004).

    [44] Xiong S. Research on the fiber optic vector hydrophone[D]. Changsha: National University of Defense Technology(2003).

    [45] Xiong S D, Luo H, Hu Y M et al. Research on interferometric polarization maintaining fiber optic micro-vibration vector sensor[J]. Chinese Journal of Lasers, 31, 843-847(2004).

    [46] Hu Y M, Hu Z L, Luo H et al. Recent progress toward fiber optic hydrophone research, application and commercialization in China[J]. Proceedings of SPIE, 8421, 183-187(2012).

    [47] Rao W. Study on key techniques of fiber optic vector hydrophone for high resolution seafloor strata detection[D]. Changsha: National University of Defense Technology(2012).

    [48] Cao C Y, Xiong S D, Yao Q et al. Performance of a 400 km interrogated fiber optics hydrophone array[J]. Proceedings of SPIE, 9157, 91579B(2014).

    [49] Meng Z, Chen W, Wang J F et al. Recent progress in fiber-optic hydrophones[J]. Photonic Sensors, 11, 109-122(2021).

    [50] Hao X Z, Zhang H Q, Wei C L et al. Sea trial for fiber-optic hydrophone array used in marine geophysical exploration[J]. Journal of Tropical Oceanography, 37, 93-98(2018).

    [51] Gu H C, Huang J B, Yao G F et al. A 64-element fiber laser hydrophone flank array[J]. Proceedings of SPIE, 11763, 117639G(2021).

    [52] Lu B, Wu B Y, Gu J F et al. Distributed optical fiber hydrophone based on Φ-OTDR and its field test[J]. Optics Express, 29, 3147-3162(2021).

    [53] Dong Y K, Zhang H Y, Chen L et al. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair[J]. Applied Optics, 51, 1229-1235(2012).

    [54] Dominguez-Lopez A, Soto M A, Martin-Lopez S et al. Resolving 1 million sensing points in an optimized differential time-domain Brillouin sensor[J]. Optics Letters, 42, 1903-1906(2017).

    [55] Lee M W, Stiller B, Hauden J et al. Differential phase-shift-keying technique-based Brillouin echo-distributed sensing[J]. IEEE Photonics Technology Letters, 24, 79-81(2012).

    [56] Hotate K, Tanaka M. Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique[J]. IEEE Photonics Technology Letters, 14, 179-181(2002).

    [57] Zadok A, Antman Y, Primerov N et al. Random-access distributed fiber sensing[J]. Laser & Photonics Reviews, 6, L1-L5(2012).

    [58] Ba D X, Li Y, Yan J L et al. Phase-coded Brillouin optical correlation domain analysis with 2-mm resolution based on phase-shift keying[J]. Optics Express, 27, 36197-36205(2019).

    [59] Peled Y, Motil A, Tur M. Fast Brillouin optical time domain analysis for dynamic sensing[J]. Optics Express, 20, 8584-8591(2012).

    [60] Chu Q, Wang B, Wang H et al. Fast Brillouin optical time-domain analysis using frequency-agile and compressed sensing[J]. Optics Letters, 45, 4365-4368(2020).

    [61] Zhou D, Dong Y, Wang B et al. Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement[J]. Light, Science & Applications, 7, 32(2018).

    [62] Soto M A. Bolognini G, di Pasquale F, et al. Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range[J]. Optics Letters, 35, 259-261(2010).

    [63] Dong Y K, Chen L, Bao X Y. Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs[J]. Journal of Lightwave Technology, 30, 1161-1167(2012).

    [64] Soto M A, Ramírez J A, Thévenaz L. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration[J]. Nature Communications, 7, 10870(2016).

    [65] Dong Y, Teng L, Tong P et al. High-sensitivity distributed transverse load sensor with an elliptical-core fiber based on Brillouin dynamic gratings[J]. Optics Letters, 40, 5003-5006(2015).

    [66] Teng L, Zhang H, Dong Y et al. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings[J]. Optics Letters, 41, 4413-4416(2016).

    [67] Kim Y H, Kwon H, Kim J et al. Distributed measurement of hydrostatic pressure based on Brillouin dynamic grating in polarization maintaining fibers[J]. Optics Express, 24, 21399-21406(2016).

    [68] Bashan G, Diamandi H H, London Y et al. Optomechanical time-domain reflectometry[J]. Nature Communications, 9, 2991(2018).

    [69] Chow D M, Yang Z, Soto M A et al. Distributed forward Brillouin sensor based on local light phase recovery[J]. Nature Communications, 9, 2990(2018).

    [70] Pang C, Hua Z J, Zhou D W et al. Opto-mechanical time-domain analysis based on coherent forward stimulated Brillouin scattering probing[J]. Optica, 7, 176-184(2020).

    [71] Rao Y J, Wang Z N, Wu H J et al. Recent advances in phase-sensitive optical time domain reflectometry (Ф-OTDR)[J]. Photonic Sensors, 11, 1-30(2021).

    [72] Xie K L, Rao Y J, Ran Z L. Distributed optical fiber sensing system based of Rayleigh scattering light Φ-OTDR using single-mode fiber laser with high power and narrow linewidth[J]. Acta Optica Sinica, 28, 569-572(2008).

    [73] Rao Y J, Luo J, Ran Z L et al. Long-distance fiber-optic Φ-OTDR intrusion sensing system[J]. Proceedings of SPIE, 7503, 75031O(2009).

    [74] Pan Z Q, Liang K Z, Ye Q et al. Phase-sensitive OTDR system based on digital coherent detection[C]∥2011 Asia Communications and Photonics Conference and Exhibition (ACP), November 13-16, 2011, Shanghai, China., 1-6(2011).

    [75] Masoudi A, Belal M, Newson T P. A distributed optical fibre dynamic strain sensor based on phase-OTDR[J]. Measurement Science and Technology, 24, 085204(2013).

    [76] Peng F, Wu H, Jia X H et al. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines[J]. Optics Express, 22, 13804-13810(2014).

    [78] Wang Z N, Zeng J J, Li J et al. Ultra-long phase-sensitive OTDR with hybrid distributed amplification[J]. Optics Letters, 39, 5866-5869(2014).

    [79] Peng F, Duan N, Rao Y J et al. Real-time position and speed monitoring of trains using phase-sensitive OTDR[J]. IEEE Photonics Technology Letters, 26, 2055-2057(2014).

    [80] Hartog A. -10-27[2021-05-09]. https:∥patents.google.com/patent/US9170149B2/en?oq=9170149.(2015).

    [81] Wang Z N, Zhang L, Wang S et al. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection[J]. Optics Express, 24, 853-858(2016).

    [82] Jousset P, Reinsch T, Ryberg T et al. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features[J]. Nature Communications, 9, 2509(2018).

    [83] Wang Z N, Zhang B, Xiong J et al. Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR[J]. IEEE Internet of Things Journal, 6, 6117-6124(2019).

    [84] Williams E F. Fernández-Ruiz M R, Magalhaes R, et al. Distributed sensing of microseisms and teleseisms with submarine dark fibers[J]. Nature Communications, 10, 5778(2019).

    [85] Wu H J, Liu X R, Xiao Y et al. A dynamic time sequence recognition and knowledge mining method based on the hidden Markov models (HMMs) for pipeline safety monitoring with Φ-OTDR[J]. Journal of Lightwave Technology, 37, 4991-5000(2019).

    [86] PetroChina. Top ten scientific. 2020-01-10)[2021-05-08][EB/OL]. http:∥www.cnpc.com.cn/cnpc/sdkjjz/202001/5836516fb34a48e590ebff3caf0afdd6.shtml.(2019).

    [87] Xiong J, Wang Z N, Wu Y et al. Long-distance distributed acoustic sensing utilizing negative frequency band[J]. Optics Express, 28, 35844-35856(2020).

    [88] Guan H J, Han B, Han Z W et al. High performance DAS-based optical fiber hydrophone. [C]∥Asia Communications and Photonics Conference/International Conference on Information Photonics and Optical Communications 2020 (ACP/IPOC), October 24-27, 2020, Beijing. Washington, D.C.: OSA, M4A, 100(2020).

    [89] Yao J Z, Han B, Jiang X L et al. Cladding softened fiber for sensitivity enhancement of distributed acoustic sensing[J]. Optics Express, 29, 8216-8222(2021).

    [90] Han B, Guan H J, Yao J Z et al. Distributed acoustic sensing with sensitivity-enhanced optical cable[J]. IEEE Sensors Journal, 21, 4644-4651(2021).

    [91] Eickhoff W, Ulrich R. Optical frequency domain reflectometry in single-mode fiber[J]. Applied Physics Letters, 39, 693-695(1981).

    [92] Uttam D, Culshaw B. Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique[J]. Journal of Lightwave Technology, 3, 971-977(1985).

    [93] Venkatesh S, Sorin W V. Phase noise considerations in coherent optical FMCW reflectometry[J]. Journal of Lightwave Technology, 11, 1694-1700(1993).

    [94] Passy R. Gisin N, von der Weid J P, et al. Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources[J]. Journal of Lightwave Technology, 12, 1622-1630(1994).

    [95] Chinn S R, Swanson E A, Fujimoto J G. Optical coherence tomography using a frequency-tunable optical source[J]. Optics Letters, 22, 340-342(1997).

    [96] Huber R, Wojtkowski M, Taira K et al. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles[J]. Optics Express, 13, 3513-3528(2005).

    [97] Ito F, Fan X Y, Koshikiya Y. Long-range coherent OFDR with light source phase noise compensation[J]. Journal of Lightwave Technology, 30, 1015-1024(2012).

    [98] Ding Z, Yao X S, Liu T et al. Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals[J]. Optics Express, 20, 28319-28329(2012).

    [99] Zhou D P, Qin Z G, Li W H et al. Distributed vibration sensing with time-resolved optical frequency-domain reflectometry[J]. Optics Express, 20, 13138-13145(2012).

    [100] Li W H, Chen L, Bao X Y. Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry[J]. Optics Communications, 311, 26-32(2013).

    [101] Liu Q, Fan X, He Z. Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range[J]. Optics Express, 23, 25988-25995(2015).

    [102] Wang S, Fan X, Liu Q et al. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR[J]. Optics Express, 23, 33301-33309(2015).

    [103] Wang B, Fan X Y, Wang S et al. Millimeter-resolution long-range OFDR using ultra-linearly 100 GHz-swept optical source realized by injection-locking technique and cascaded FWM process[J]. Optics Express, 25, 3514-3524(2017).

    [104] Li J, Gan J, Zhang Z et al. High spatial resolution distributed fiber strain sensor based on phase-OFDR[J]. Optics Express, 25, 27913-27922(2017).

    [105] Li H, Liu Q W, Chen D et al. High-spatial-resolution fiber-optic distributed acoustic sensor based on Φ-OFDR with enhanced crosstalk suppression[J]. Optics Letters, 45, 563-566(2020).

    [106] Hoo Y L, Jin W, Ho H L et al. Evanescent wave gas sensing using microstructure fibre[C]∥Technical Digest. CLEO/Pacific Rim 2001.4th Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.01TH8557), July 15-19, 2001, Chiba, Japan., 8-9(2001).

    [107] Hoo Y L, Jin W, Shi C et al. Design and modeling of a photonic crystal fiber gas sensor[J]. Applied Optics, 42, 3509-3515(2003).

    [108] Hoo Y L, Jin W, Ho H L et al. Gas diffusion measurement using hollow-core photonic bandgap fiber[J]. Sensors and Actuators B: Chemical, 105, 183-186(2005).

    [109] Ritari T, Tuominen J, Ludvigsen H et al. Gas sensing using air-guiding photonic bandgap fibers[J]. Optics Express, 12, 4080-4087(2004).

    [110] Bao H, Hong Y, Jin W et al. Modeling and performance evaluation of in-line Fabry-Perot photothermal gas sensors with hollow-core optical fibers[J]. Optics Express, 28, 5423-5435(2020).

    [111] Jin W, Bao H H, Zhao P C et al. Recent advances in spectroscopic gas sensing with micro/nano-structured optical fibers[J]. Photonic Sensors, 11, 141-157(2021).

    [112] Hensley C J, Broaddus D H, Schaffer C B et al. Photonic band-gap fiber gas cell fabricated using femtosecond micromachining[J]. Optics Express, 15, 6690-6695(2007).

    [113] Hoo Y L, Liu S J, Ho H L et al. Fast response microstructured optical fiber methane sensor with multiple side-openings[J]. IEEE Photonics Technology Letters, 22, 296-298(2010).

    [114] Jin W, Cao Y, Yang F et al. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range[J]. Nature Communications, 6, 6767(2015).

    [115] Lin Y C, Jin W, Yang F et al. Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre[J]. Scientific Reports, 6, 1-12(2016).

    [116] Lin Y, Liu F, He X et al. Distributed gas sensing with optical fibre photothermal interferometry[J]. Optics Express, 25, 31568-31585(2017).

    [117] Yang F, Jin W, Lin Y C et al. Hollow-core microstructured optical fiber gas sensors[J]. Journal of Lightwave Technology, 35, 3413-3424(2017).

    [118] Qi Y, Yang F, Lin Y C et al. Nanowaveguide enhanced photothermal interferometry spectroscopy[J]. Journal of Lightwave Technology, 35, 5267-5275(2017).

    [119] Yang F, Jin W. All-fiber hydrogen sensor based on stimulated Raman gain spectroscopy with a 1550-nm hollow-core fiber[J]. Proceedings of SPIE, 10323, 103233C(2017).

    [120] Yang F, Zhao Y, Qi Y et al. Towards label-free distributed fiber hydrogen sensor with stimulated Raman spectroscopy[J]. Optics Express, 27, 12869-12882(2019).

    [121] Qi Y, Zhao Y, Bao H H et al. Nanofiber enhanced stimulated Raman spectroscopy for ultra-fast, ultra-sensitive hydrogen detection with ultra-wide dynamic range[J]. Optica, 6, 570-576(2019).

    [122] Bao H H, Jin W, Miao Y P et al. Laser-induced dispersion with stimulated Raman scattering in gas-filled optical fiber[J]. Journal of Lightwave Technology, 37, 2120-2125(2019).

    [123] Zhao P, Zhao Y, Bao H et al. Mode-phase-difference photothermal spectroscopy for gas detection with an anti-resonant hollow-core optical fiber[J]. Nature Communications, 11, 847(2020).

    [124] Chen F F, Jiang S L, Jin W et al. Ethane detection with mid-infrared hollow-core fiber photothermal spectroscopy[J]. Optics Express, 28, 38115-38126(2020).

    [125] Zhao Y, Qi Y, Ho H L et al. Photoacoustic Brillouin spectroscopy of gas-filled anti-resonant hollow-core optical fibers[J]. Optica, 8, 532-538(2021).

    [126] Gander M J. MacPherson W N, McBride R, et al. Bend measurement using Bragg gratings in multicore fibre[J]. Electronics Letters, 36, 120-121(2000).

    [127] Flockhart G M. MacPherson W N, Barton J S, et al. Two-axis bend measurement with Bragg gratings in multicore optical fiber[J]. Optics Letters, 28, 387-389(2003).

    [129] Miller G A, Askins C G, Friebele E J. Shape sensing using distributed fiber optic strain measurements[J]. Proceedings of SPIE, 5502, 528-531(2004).

    [130] Zhang L W, Qian J W, Shen L Y et al. FBG sensor devices for spatial shape detection of intelligent colonoscope[C]∥IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04.2004, April 26-May 1, 2004, New Orleans, LA, USA., 834-840(2004).

    [131] Duncan R G, Froggatt M E, Kreger S T et al. High-accuracy fiber-optic shape sensing[J]. Proceedings of SPIE, 6530, 65301S(2007).

    [132] Moore J P, Rogge M D. Shape sensing using multi-core fiber optic cable and parametric curve solutions[J]. Optics Express, 20, 2967-2973(2012).

    [133] Westbrook P S, Feder K S, Kremp T et al. Integrated optical fiber shape sensor modules based on twisted multicore fiber grating arrays[J]. Proceedings of SPIE, 8938, 89380H(2014).

    [134] Zhao Z, Soto M A, Tang M et al. Distributed shape sensing using Brillouin scattering in multi-core fibers[J]. Optics Express, 24, 25211-25223(2016).

    [135] Westbrook P S, Kremp T, Feder K S et al. Continuous multicore optical fiber grating arrays for distributed sensing applications[J]. Journal of Lightwave Technology, 35, 1248-1252(2017).

    [136] Gherlone M, Cerracchio P, Mattone M. Shape sensing methods: review and experimental comparison on a wing-shaped plate[J]. Progress in Aerospace Sciences, 99, 14-26(2018).

    [137] Floris I, Adam J M, Calderòn P A et al. Measurement uncertainty of 7-core multicore fiber shape sensors[J]. Proceedings of SPIE, 11199, 111992Q(2019).

    [138] Floris I, Madrigal J, Sales S et al. Experimental study of the influence of FBG length on optical multicore shape sensors performance[C]∥Asia Communications and Photonics Conference (ACPC) 2019, November 2-5, 2019, Chengdu, China.(2019).

    [139] Barrera D, Madrigal J, Delepine-Lesoille S et al. Multicore optical fiber shape sensors suitable for use under gamma radiation[J]. Optics Express, 27, 29026-29033(2019).

    [140] Galloway K C, Chen Y, Templeton E et al. Fiber optic shape sensing for soft robotics[J]. Soft Robotics, 6, 671-684(2019).

    [141] Khan F, Denasi A, Barrera D et al. Multi-core optical fibers with Bragg gratings as shape sensor for flexible medical instruments[J]. IEEE Sensors Journal, 19, 5878-5884(2019).

    [142] 2020-05-21)[2021-05-24][EB/OL]. https:∥news.bjx.com.cn/html/20200521/1074323.shtml.(2020).

    [143] Liu T Y, Wang Z W, Li Z et al. Advance of fiber optic sensors application for coal mine methane and fire hazards monitoring[J]. Shandong Science, 32, 110-117(2019).

    [144] Reid J, Labrie D. Second-harmonic detection with tunable diode lasers: comparison of experiment and theory[J]. Applied Physics B, 26, 203-210(1981).

    [145] Hu T K. The trial of optical fiber temperature sensor in China’s coal mine[J]. Safety in Coal Mines, 17, 34-36(1986).

    [146] Uehara K, Tai H. Remote detection of methane with a 1.66-microm diode laser[J]. Applied Optics, 31, 809-814(1992).

    [147] Stewart G, Culshaw B, Tandy C et al. Multipoint fibre sensors for trace gas monitoring using derivative spectroscopy[J]. Proceedings of SPIE, 3483, 132-136(1998).

    [148] Zhao L. Development of gas optical fiber sensing instrument for coal mine application[D]. Wuhan: Wuhan University of Technology(2009).

    [149] Li Y F, Wei Y B, Zhao Y J et al. Fiber laser gas sensor with self-diagnosis function. C]∥National Conference on Optoelectronics and Quantum Electronics, March 18, 2011, Beijing, China. Beijing: Chinese Institute of Electronics, 108-110(2011).

    [150] Sun Y J, Liu T Y, Ma J P et al. Optical fiber integrated monitoring and warning system for coal mine safety production. C]∥2013 Coal Technology and Equipment Development Forum Proceedings, October 21, 2013, Beijing, China. Beijing: China Nationak Coal Association, 64-74(2013).

    [151] Li Y F, Wei Y B, Wang X S et al. Experimental study on laser methane sensor and its reliability. C]∥International Conference on Optical Fiber and Optoelectronic Sensor and its Safety Application (OFSIS2015), January 22, 2015, Jinnan, China. Jinan: Department of Science & Technology of Shandong Province, 97-101(2015).

    [152] Li Y F, Chang L, Zhao Y J et al. A fiber optic methane sensor based on wavelength adaptive vertical cavity surface emitting laser without thermoelectric cooler[J]. Measurement, 79, 211-215(2016).

    [153] Chang L. Laser methane sensor for coal mine based on pressure compensation[J]. Safety in Coal Mines, 47, 126-128(2016).

    [154] -12-29)[2021-05-07]. https:∥www.mem.gov.cn/gk/gwgg/tz_01/201701/t20170103_235131.shtml.(2016).

    [155] Ni J S, Chang J, Liu T Y et al. Fiber methane gas sensor and its application in methane outburst prediction in coal mine[C]∥2008 1st Asia-Pacific Optical Fiber Sensors Conference, November 7-9, 2008, Chengdu, China., 1-4(2008).

    [156] Chen R G, Wang C X. Application of optic fiber sensing technique in coal mine electric parameters measuring[J]. Coal Mine Automation, 24, 32-34(1998).

    [157] Iseki T, Tai H, Kimura K. A portable remote methane sensor using a tunable diode laser[J]. Measurement Science and Technology, 11, 594-602(2000).

    [158] Chai J. Basic study on crack and deflection of rock by optical fiber sensing technology[D]. Xi’an: Xi’an University of Science and Technology(2003).

    [159] Lytkine A, Jaeger W, Tulip J. Multi-species gas detection with long-wavelength VCSEL[J]. Proceedings of SPIE, 5594, 155-163(2004).

    [160] Zhao Y J, Wang C, Liu T Y et al. Application in methane extraction of fiber methane monitoring system based on spectral absorption[J]. Spectroscopy and Spectral Analysis, 30, 2857-2860(2010).

    [161] Zhao Y J, Chang J, Wang C et al. Research of fiber couple parameters monitoring system of methane and temperature[J]. Chinese Journal of Lasers, 37, 3070-3074(2010).

    [162] Li Y F, Liu T Y, Wei Y B et al. -03-13[P]. device based on VCSEL: CN102967580A.(2013).

    [163] Hou M Y, Wang J Q, Zhao L[J]. Real-time determination method of distributed temperature measuring optical fiber tail position in goaf China Science and Technology Information, 2016, 70-72.

    [164] Wang L. Research and design of wireless laser methane sensor in coal mine safety monitoring system[J]. Coal Technology, 38, 154-158(2019).

    [165] Liu T Y, Ning Y N, Jin G X, system: CN108375555A[P] et al. -08-07(2018).

    [166] Wang X S. Accelerated test of working stability of mine-used laser methane sensor[J]. Industry and Mine Automation, 45, 45-49(2019).

    [167] Zhang Y Q[J]. Oil is still a strategic energy that needs to be developed vigorously Energy Review, 2019, 1.

    [168] Shi X F, Cai Z Q, Li Z[J]. The optical fiber distributed temperature measurement system and its application in petroleum well logging Petroleum Instruments, 2002, 20-23, 62.

    [169] Xu Y L. Wide application of optical fiber temperature measuring system in oil well monitoring. C]∥Proceedings of the 11th Annual Meeting of China Petroleum and Chemical Automation, June 1, 2012, Huangshan, China. Beijing: China Petroleum and Chemical Industry Association, 498-501(2012).

    [170] Zhang Y Q, Du Y X, Wu G W et al. Research and application of distributed optical fiber temperature monitoring system[J]. China Petroleum Machinery, 31, 6-8, 10(2003).

    [171] Liu L C. Application of real-time distributed optical fiber temperature measurement in SAGD[J]. Journal of Shengli College China University of Petroleum, 24, 5-7(2010).

    [172] Lin F Z. The fiber optic monitoring technology research of casing strain and formation pressure in production and injection well[D]. Daqing: Northeast Petroleum University(2012).

    [173] Duan S N, Pan Y, Lu Z W. Oilfield application and development trend of optical fiber temperature and pressure dynamic monitoring technology[J]. Technology Supervision in Petroleum Industry, 32, 49-52(2016).

    [174] from dream to reality[EB/OL]. -08-14)[2021-05-24]. https:∥www.sohu.com/a/333807092_120058319.(2019).

    [175] -11-04)[2021-05-24]. http:∥www.cnpc.com.cn/cnpc/cpzx/201911/61025b7f1f944a2a8d66d 464167d079a.shtml.(2019).

    [176] -03-03)[2021-05-24]. http:∥news.cnpc.com.cn/system/2021/03/03/030025852.shtml.(2021).

    [177] Wang N B, Duan S N, Pan Y et al. Research on fluid production profile analysis of optical fiber test in steam huff well. C]∥2018IFEDC International Conference on Oil & Gas Field Exploration and Development, September 18, 2018, Xi’an, Shaanxi, China. [S.l.: s.n.], 9(2018).

    [178] Uma Kumari C R, Samiappan D, Kumar R et al. Development and experimental validation of a Nuttall apodized fiber Bragg Grating sensor with a hydrophobic polymer coating suitable for monitoring sea surface temperature[J]. Optical Fiber Technology, 56, 102176(2020).

    [179] Jin W, Li X, Wu S et al. Highly sensitive temperature sensing probes based on liquid cladding elliptical micro/nanofibers[J]. Optics Express, 28, 20062-20073(2020).

    [180] Sudarsono S, Yudoyono G, Prajitno G et al. Detection of salinity in the process of heating seawater by using a directional coupler of the multimode plastic optical fiber with a plane mirror as a reflector[J]. Journal of Optics, 49, 48-52(2020).

    [181] Wu S H, Jin W, Bi W H et al. A robust salinity sensor based on encapsulated long-period grating in microfiber[J]. Optoelectronics Letters, 16, 418-422(2020).

    [182] Wang L, Wang Y J, Wang J F et al. A high spatial resolution FBG sensor array for measuring ocean temperature and depth[J]. Photonic Sensors, 10, 57-66(2020).

    [183] Chen L S. Reaserch on sea overflow petroleim detection method based on long period fiber grating[D]. Qinhuangdao: Yanshan University(2015).

    [184] Tan A L. Study on fiber optic spectroscopy detecting method for petroleum pollutants in water[D]. Qinhuangdao: Yanshan University(2012).

    [185] Lin Y F, Yang J Y, Dong X Y. Heavy metal ions sensor based on signal-to-noise ratio measurement of FBG[J]. Journal of Optoelectronics·Laser, 27, 704-708(2016).

    [186] Bi W H, Chen J G, Zhang S et al. Study on the influence factors of the concentration of heavy metals by spectrophotometry[J]. Acta Physica Sinica, 66, 149-156(2017).

    [187] Guo Z, Gao K, Yang H et al. 20-mm-diameter interferometric hydrophone towed array based on fiber Bragg gratings[J]. Acta Optica Sinica, 39, 1106003(2019).

    [188] Wang W R, Pei Y Y, Ye L Y et al. High-sensitivity cuboid interferometric fiber-optic hydrophone based on planar rectangular film sensing[J]. Sensors, 20, 6422(2020).

    [189] Zhong Z X, Duan J M, Zhang H et al. Design of fiber grating water flow direction sensor[J]. Water Resources and Hydropower Engineering, 51, 63-69(2020).

    [190] Lü J J, Zhang Q, Liu Y L. Developing trend and coping strategies about high sensitive electromagnetic sensor of the sea battlefield[J]. Computer Measurement & Control, 23, 3574-3576(2015).

    [191] Zhang W T, Huang W Z, Li F. High-resolution fiber Bragg grating sensor and its applications of geophysical exploration, seismic observation and marine engineering[J]. Opto-Electronic Engineering, 45, 94-108(2018).

    [192] -12-03)[2021-05-24]. http:∥capital.people.com.cn/n1/2020/1203/c405954-31953773.html.(2020).

    [193] Nagy B, Farmer J D, Bui Q M et al. Statistical basis for predicting technological progress[J]. PLoS One, 8, e52669(2013).

    Libo Yuan, Weijun Tong, Shan Jiang, Yuanhong Yang, Zhou Meng, Yongkang Dong, Yunjiang Rao, Zuyuan He, Wei Jin, Tongyu Liu, Qilin Zou, Weihong Bi. Road Map of Fiber Optic Sensor Technology in China[J]. Acta Optica Sinica, 2022, 42(1): 0100001
    Download Citation