• Acta Optica Sinica
  • Vol. 41, Issue 9, 0911004 (2021)
Yijiang Shen1、*, Xiaopeng Wang1, Yanzhou Zhou1, and Zhenrong Zhang2
Author Affiliations
  • 1School of Automation, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
  • 2School of Computer, Electronics and Information, Guangxi University, Nanning, Guangxi 530004, China
  • show less
    DOI: 10.3788/AOS202141.0911004 Cite this Article Set citation alerts
    Yijiang Shen, Xiaopeng Wang, Yanzhou Zhou, Zhenrong Zhang. Local Level Set Based Mask Optimization with Semi-Implicit Discretization[J]. Acta Optica Sinica, 2021, 41(9): 0911004 Copy Citation Text show less
    References

    [1] Wong A K K. Introduction[M]. ∥Wong A K K. Resolution enhancement techniques in optical lithography. Bellingham: SPIE, 1-30(2005).

    [2] Wong A K. Optical imaging in projection microlithography[M]. Bellingham: SPIE(2005).

    [3] Zhu B E, Li S K, Wang X Z et al. High-order aberration measurement technique for immersion lithography projection lens based on multi-polarized illuminations[J]. Acta Optica Sinica, 38, 0712004(2018).

    [4] Duan C, Zong M C, Fan W et al. Focus control technology in immersion lithography[J]. Acta Optica Sinica, 38, 0912002(2018).

    [5] Meng Z J, Li S K, Wang X Z et al. Jones pupil measurement method of lithographic projection lens[J]. Acta Optica Sinica, 39, 0312004(2019).

    [6] Pang L Y, Liu Y, Abrams D et al. Inverse lithography technology (ILT): what is the impact to the photomask industry?[J]. Proceedings of SPIE, 6283, 62830X(2006). http://proceedings.spiedigitallibrary.org/article.aspx?articleid=1289798

    [7] Poonawala A, Borodovsky Y, Milanfar P et al. ILT for double exposure lithography with conventional and novel materials[J]. Proceedings of SPIE, 6520, 65202Q(2007).

    [8] Pang L Y, Liu Y, Abrams D et al. Inverse lithography technology (ILT): a natural solution for model-based SRAF at 45-nm and 32-nm[J]. Proceedings of SPIE, 6607, 660739(2007). http://spie.org/x648.html?product_id=729028

    [9] Peng Y, Zhang J Y, Wang Y et al. Gradient-based source and mask optimization in optical lithography[J]. IEEE Transactions on Image Processing, 20, 2856-2864(2011).

    [10] Ma X, Arce G R. Pixel-based simultaneous source and mask optimization for resolution enhancement in optical lithography[J]. Optics Express, 17, 5783-5793(2009).

    [11] Jia N N, Lam E Y. Pixelated source mask optimization for process robustness in optical lithography[J]. Optics Express, 19, 19384-19398(2011). http://www.opticsinfobase.org/abstract.cfm?uri=oe-19-20-19384

    [12] Ma X, Han C Y, Li Y Q et al. Pixelated source and mask optimization for immersion lithography[J]. Journal of the Optical Society of America A, 30, 112-123(2013). http://europepmc.org/abstract/MED/23456007

    [13] Lü W, Liu S Y, Xia Q et al. Level-set-based inverse lithography for mask synthesis using the conjugate gradient and an optimal time step[J]. Journal of Vacuum Science & Technology B, 31, 041605(2013).

    [14] Li J, Lam E Y. Robust source and mask optimization compensating for mask topography effects in computational lithography[J]. Optics Express, 22, 9471-9485(2014). http://www.ncbi.nlm.nih.gov/pubmed/24787836

    [15] Li J, Liu S Y, Lam E Y et al. Efficient source and mask optimization with augmented Lagrangian methods in optical lithography[J]. Optics Express, 21, 8076-8090(2013). http://www.ncbi.nlm.nih.gov/pubmed/23571898

    [16] Pang L Y, Hu P, Peng D P et al. Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods[J]. Proceedings of SPIE, 7520, 75200X(2009).

    [17] Tolani V, Hu P, Peng D P et al. Source-mask co-optimization (SMO) using level set methods[J]. Proceedings of SPIE, 7488, 74880Y(2009). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1341993

    [18] Shen Y J, Wong N, Lam E Y et al. Level-set-based inverse lithography for photomask synthesis[J]. Optics Express, 17, 23690-23701(2009). http://www.ncbi.nlm.nih.gov/pubmed/20052080

    [19] Shen Y J, Jia N N, Wong N et al. Robust level-set-based inverse lithography[J]. Optics Express, 19, 5511-5521(2011). http://europepmc.org/abstract/MED/21445189

    [20] Shen Y. Level-set based mask synthesis with a vector imaging model[J]. Optics Express, 25, 21775-21785(2017). http://europepmc.org/abstract/MED/29041471

    [21] Shen Y J, Peng F, Huang X Y et al. Adaptive gradient-based source and mask co-optimization with process awareness[J]. Chinese Optics Letters, 17, 121102(2019). http://www.opticsjournal.net/Articles/Abstract?aid=OJ4b965e5b6331762a

    [22] Ma X, Zhao Q L, Zhang H et al. Model-driven convolution neural network for inverse lithography[J]. Optics Express, 26, 32565-32584(2018). http://www.researchgate.net/publication/329258221_Model-driven_convolution_neural_network_for_inverse_lithography

    [23] LeVeque R J. Scalar conservation laws[M]. ∥LeVeque R J. Numerical methods for conservation laws. Basel: Birkhäuser, 19-40(1992).

    [24] Osher S, Paragios N. Geometric level set methods in imaging, vision, and graphics[M]. New York: Springer(2003).

    [25] Weickert J. A review of nonlinear diffusion filtering[M]. ∥Romeny B T H, Florack L, Koenderink J, et al. Scale-space theory in computer vision. Berlin: Springer, 1-28(1997).

    [26] Weickert J. Romeny B M T H, Viergever M A, et al. Efficient and reliable schemes for nonlinear diffusion filtering[J]. IEEE Transactions on Image Processing, 7, 398-410(1998).

    [27] Peaceman D W. Rachford H H Jr. The numerical solution of parabolic and elliptic differential equations[J]. Journal of the Society for Industrial and Applied Mathematics, 3, 28-41(1955). http://www.ams.org/mathscinet-getitem?mr=71874

    [28] Barash D, Schlick T, Israeli M et al. Multiplicative operator splittings in nonlinear diffusion: from spatial splitting to multiple timesteps[J]. Journal of Mathematical Imaging and Vision, 19, 33-48(2003). http://www.springerlink.com/content/t710vm7l1125tt15/

    [29] Conte S D, de Boor C. Elementary numerical analysis[M]. New York: McGraw-Hill Science, 432(1980).

    [30] Ma X, Shi D X, Wang Z Q et al. Lithographic source optimization based on adaptive projection compressive sensing[J]. Optics Express, 25, 7131-7149(2017). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-25-6-7131

    [31] Ma X, Wang Z Q, Li Y Q et al. Fast optical proximity correction method based on nonlinear compressive sensing[J]. Optics Express, 26, 14479-14498(2018). http://europepmc.org/abstract/MED/29877485

    [32] Shen Y J. Lithographic source and mask optimization with narrow-band level-set method[J]. Optics Express, 26, 10065-10078(2018). http://europepmc.org/abstract/MED/29715948

    [33] Li C M, Xu C Y, Gui C F et al. Distance regularized level set evolution and its application to image segmentation[J]. IEEE Transactions on Image Processing, 19, 3243-3254(2010). http://www.ams.org/mathscinet-getitem?mr=2767683

    [34] Goodman J W. Introduction to fourier optics[M]. 2nd ed. New York: McGraw-Hill Science(1996).

    [35] Born M, Wolf E[M]. Principle of optics(1999).

    [36] Pistor T V, Neureuther A R, Socha R J et al. Modeling oblique incidence effects in photomasks[J]. Proceedings of SPIE, 4000, 228-237(2000). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=896384

    [37] Poonawala A, Milanfar P. Mask design for optical microlithography: an inverse imaging problem[J]. IEEE Transactions on Image Processing, 16, 774-788(2007).

    [38] Yong D M. Iterative solution of large linear systems[M]. Amsterdam: Elsevier(1971).

    [39] Osher S, Fedkiw R. Particle level set method[M]. ∥Osher S, Fedkiw R. Level set methods and dynamic implicit surfaces. New York: Springer, 79-86(2003).

    Yijiang Shen, Xiaopeng Wang, Yanzhou Zhou, Zhenrong Zhang. Local Level Set Based Mask Optimization with Semi-Implicit Discretization[J]. Acta Optica Sinica, 2021, 41(9): 0911004
    Download Citation