• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 3, 347 (2021)
Luan-Feng GAO, Yu-Lu HU*, Xiao-Fang ZHU, Quan HU, Jian-Qing LI, and Bin LI
Author Affiliations
  • School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.03.011 Cite this Article
    Luan-Feng GAO, Yu-Lu HU, Xiao-Fang ZHU, Quan HU, Jian-Qing LI, Bin LI. Simulation and cold test of integrated multi-beam TWT with multi-corrugated waveguide SWS[J]. Journal of Infrared and Millimeter Waves, 2021, 40(3): 347 Copy Citation Text show less
    References

    [1] O QUEVEDO-TERUEL, J MIAO, M MATTSSON et al. Glide-Symmetric Fully Metallic Luneburg Lens for 5G Communications at Ka-Band. IEEE Antennas and Wireless Propagation Letters, 17, 1588-1592(2018).

    [2] S SHAKIB, J DUNWORTH, V APARIN et al. mmWave CMOS Power Amplifiers for 5G Cellular Communication. IEEE Communications Magazine, 57, 98-105(2019).

    [3] F BOCCARDI, R W H JR, A LOZANO et al. Five Disruptive Technology Directions for 5G. IEEE Communications Magazine, 52, 74-80(2014).

    [4] C PAOLONI, R LETIZIA, R ZIMMERMAN et al. W-band TWTs for new generation high capacity wireless networks, 1-2(2016).

    [5] A GUPTA, R K JHA. A Survey of 5G Network: Architecture and Emerging Technologies. IEEE Access, 3, 1206-1232(2015).

    [6] S S DHILLON, M S VITIELLO, E H LINFIELD et al. The 2017 terahertz science and technology roadmap. Journal of Physics D Applied Physics, 50, 043001(2017).

    [7] J S CAYGILL, F DAVIS, S P J HIGSON. Current trends in explosive detection techniques. Talanta, 88, 14-29(2012).

    [8] J SWEGLE, E SCHAMILOGLU, J BENFORD. High Power Microwaves, Second Edition. High Power Microwaves, Second Edition Series: Series in Plasma Physics(2007).

    [9] Bo CHEN, Qing-Ping ZHAO, Shao-Lun CAI et al. Development of a Ka-band Space TWT, 247-248(2011).

    [10] T S RAPPAPORT, S SUN, R MAYZUS et al. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!. IEEE Access, 1, 335-349(2013).

    [11] M MINEO, C PAOLONI. Double-Corrugated Rectangular Waveguide Slow-Wave Structure for Terahertz Vacuum Devices. IEEE Transactions on Electron Devices, 57, 3169-3175(2010).

    [12] C PAOLONI, A D CARLO, F BOUAMRANE et al. Design and Realization Aspects of 1-THz Cascade Backward Wave Amplifier Based on Double Corrugated Waveguide. IEEE Transactions on Electron Devices, 60, 1236-1243(2013).

    [13] Y SHIN, A BAIG, L R BARNETT et al. System Design Analysis of a 0.22-THz Sheet-Beam Traveling-Wave Tube Amplifier. IEEE Transactions on Electron Devices, 59, 234-240(2012).

    [14] J C TUCEK, M A BASTEN, D A GALLAGHER et al. 220 GHz power amplifier development at Northrop Grumman, 553-554(2012).

    [15] C C CUTLER. Instability in Hollow and Strip Electron Beams. Journal of Applied Physics, 27, 1028-1029(1956).

    [16] H LIANG, Q XUE, C RUAN et al. Integrated Planar Three-Beam Electron Optics System for 220 GHz Folded Waveguide TWT. IEEE Transactions on Electron Devices, PP, 1-7(2017).

    [17] C PAOLONI, M MINEO, M HENRY et al. Double Corrugated Waveguide for Ka-Band Traveling Wave Tube. IEEE Transactions on Electron Devices, 62, 3851-3856(2015).

    [18] Yu-Lu HU, Xiao-Fang ZHU, C PAOLONI. Study of the dispersion of the double-corrugated waveguide at THz frequencies, 1-2(2016).

    [19] S P MORGAN. Effect of Surface Roughness on Eddy Current Losses at Microwave Frequencies. Journal of Applied Physics, 20, 352-362(1949).

    [20] M P KIRLEY, J H BOOSKE. Terahertz Conductivity of Copper Surfaces. IEEE Transactions on Terahertz Science and Technology, 5, 1012-1020(2015).

    Luan-Feng GAO, Yu-Lu HU, Xiao-Fang ZHU, Quan HU, Jian-Qing LI, Bin LI. Simulation and cold test of integrated multi-beam TWT with multi-corrugated waveguide SWS[J]. Journal of Infrared and Millimeter Waves, 2021, 40(3): 347
    Download Citation