• Laser & Optoelectronics Progress
  • Vol. 57, Issue 23, 230603 (2020)
Le Ma1, Jie Zhang2、*, Bo Wang2, Chao Lei2, Yajie Li2, Qian Qu1, Bo Xiao1, Yutong Wang1, and Pingliang Yuan1
Author Affiliations
  • 1Information Communication Company, Gansu Electric Power Company, State Grid, Gansu, Lanzhou 730000, China
  • 2State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    DOI: 10.3788/LOP57.230603 Cite this Article Set citation alerts
    Le Ma, Jie Zhang, Bo Wang, Chao Lei, Yajie Li, Qian Qu, Bo Xiao, Yutong Wang, Pingliang Yuan. Quantum Noise Stream Cipher of Optical Communication in Physical Layer Security[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230603 Copy Citation Text show less
    References

    [1] Nair R, Yuen H P, Corndorf E et al. Quantum-noise randomized ciphers[J]. Physical Review A, 74, 052309(2006).

    [2] key generation[EB/OL]. -07-30)[2020-03-26]. Yuen H P. KCQ: a new approach to quantum cryptography I. general principles(2004). https://arxiv.org/abs/quant-ph/0311061.

    [3] Verma P K, El Rifai M. Chan K W C. Multi-photon quantum secure communication[M]. Singapore: Springer, 90(2019).

    [4] Hirota O, Kato K, Shoma M et al. Quantum key distribution with unconditional security for all optical fiber network[J]. Proceedings of SPIE, 5161, 320-331(2004). http://arxiv.org/abs/quant-ph/0308007

    [5] Kato K, Hirota O. Quantum quadrature amplitude modulation system and its applicability to coherent-state quantum cryptography[J]. Proceedings of SPIE, 5893, 589303(2005).

    [6] Doi Y, Akutsu S, Honda M et al. 360km field transmission of 10Gbit/s stream cipher by quantum noise for optical network. [C]//Optical Fiber Communication Conference 2010, March 21-25, San Diego, California. Washington, D.C.: OSA, OWC4(2010).

    [7] Futami F, Tanizawa K, Kato K et al. 1, 000-km transmission of 1.5-Gb/s Y-00 quantum stream cipher using 4096-level intensity modulation signals. [C]//2019 Conference on Lasers and Electro-Optics, May 5-10, 2019, San Jose, California. Washington, D.C.: OSA, SW3O(2019).

    [8] Tanizawa K, Futami F. Single-channel 48-Gbit/s DP PSK Y-00 quantum stream cipher transmission over 400- and 800-km SSMF[J]. Optics Express, 27, 25357-25363(2019).

    [9] Nakazawa M, Yoshida M, Hirooka T et al. QAM quantum noise stream cipher transmission over 100km with continuous variable quantum key distribution[J]. IEEE Journal of Quantum Electronics, 53, 1-16(2017). http://d.wanfangdata.com.cn/periodical/17aa9554f524a4c4264a535b00549a69

    [10] Nakazawa M, Yoshida M, Hirano T. Secure transmission using QAM quantum noise stream cipher with continuous variable QKD. [C]//Optical Fiber Communication Conference 2018, March 11-15, 2018, San Diego, California. Washington, D.C.: OSA, Th3E, 2(2018).

    [11] Yoshida M, Hirooka T, Kasai K et al. Single-channel 40Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480km[J]. Optics Express, 24, 652-661(2016).

    [12] Kato K, Hirota O. Quantum stream cipher: part V. on the optimal modulation scheme and the implementation of deliberate signal randomization[J]. Proceedings of SPIE, 6710, 67100T(2007). http://spie.org/x648.xml?product_id=733296

    [13] Kato K. A unified analysis of optical signal modulation formats for quantum enigma cipher[J]. Proceedings of SPIE, 1040, 104090K(2017).

    [14] Yang X K, Zhang J, Li Y J et al. DFTs-OFDM based quantum noise stream cipher system[J]. Optical Fiber Technology, 52, 101939(2019). http://www.sciencedirect.com/science/article/pii/S1068520019300306

    [15] Sohma M, Hirota O. Masking property of quantum random cipher with phase mask encryption[J]. Quantum Information Processing, 13, 2221-2239(2014). http://link.springer.com/article/10.1007/s11128-014-0748-4

    [16] Hirota O, Kurosawa K. Immunity against correlation attack on quantum stream cipher by Yuen 2000 protocol[J]. Quantum Information Processing, 6, 81-91(2007). http://dx.doi.org/10.1007/s11128-006-0039-9

    [17] Hirota O. Practical security analysis of a quantum stream cipher by the Yuen 2000 protocol[J]. Physical Review A, 76, 032307(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLRAAN000076000003032307000001&idtype=cvips&gifs=Yes

    [18] Shimizu T, Hirota O, Nagasako Y. Running key mapping in a quantum stream cipher by the Yuen 2000 protocol[J]. Physical Review A, 77, 034305(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000008000004000012000001&idtype=cvips&gifs=Yes

    [19] Lu Y. Research on continuous variable quantum secure communication technology[D]. Shanghai: Shanghai Jiaotong University, 56(2011).

    [20] Futami F, Kato K, Hirota O. A novel transceiver of the Y-00 quantum stream cipher with the randomization technique for optical communication with higher security performance[J]. Proceedings of SPIE, 9980, 99800O(2016).

    [21] Akutsu S, Doi Y, Hosoi T et al. 192km relay transmission and HDTV transmission experiments by quantum Yuen-2000 transceiver[J]. AIP Conference Proceedings, 1110, 331(2009). http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.3131340?term=

    [22] Futami F, Hirota O. Demonstration of 2.5Gbit/sec free space optical communication by using Y-00 cipher: toward secure aviation systems[J]. Proceedings of SPIE, 9202, 92020R(2014).

    [23] Hirota O, Ohhata K, Honda M et al. Experiments of 10Gbit/sec quantum stream cipher applicable to optical Ethernet and optical satellite link[J]. Proceedings of SPIE, 7465, 746509(2009).

    [24] Zhang J. Technologies and applications of endogenously secure optical communication[J]. Radio Communications Technology, 45, 337-342(2019).

    [25] Yang X K, Zhang J, Li Y J et al. Single-carrier QAM/QNSC and PSK/QNSC transmission systems with bit-resolution limited DACs[J]. Optics Communications, 445, 29-35(2019).

    [26] Wang K, Li Y J, Yang X K et al. Ciphertext mapping method based on bitwise NOT operation in quantum noise stream cipher[C]//2018 Asia Communications and Photonics Conference (ACP), October 26-29, 2018, Hangzhou, China.(2018).

    [27] Wang K, Zhang J, Li Y J et al. Multi-bit mapping based on constellation rotation in quantum noise stream cipher[J]. Optics Communications, 446, 147-155(2019). http://www.sciencedirect.com/science/article/pii/S0030401819303165

    [28] Wang K, Li Y J, Zhao Y L et al. A multi-ring BPSK mapping in quantum noise stream cipher[C]//2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (P(2019).

    [29] Lei C, Zhang J, Li Y J et al. Key distribution based on survival life time with Y-00 protocol in optical fiber link[C]//2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics (2019).

    [30] Lei C, Zhang J, Li Y J et al. Long-haul and high-speed key distribution based on one-way non-dual arbitrary basis transformation in optical fiber link. [C]//Optical Fiber Communication Conference (OFC) 2020, March 8-12, 2020, San Diego, California. Washington, D.C.: OSA, W2A, 51(2020).

    [31] Wang X Q, Zhang J, Li Y J et al. Secure key distribution system based on optical channel physical features[J]. IEEE Photonics Journal, 11, 1-11(2019).

    [32] Tu Z W, Zhang J, Li Y J et al. Experiment demonstration of physical layer secret key distribution with information reconciliation in digital coherent optical OFDM system[C]//2019 Asia Communications and Photonics Conference (ACP), (2019).

    [33] Liu M, Li Y, Song H et al. Experimental demonstration of optical fiber eavesdropping detection based on deep learning[C]//2019 Asia Communications and Photonics Conference (ACP), November 2-5, 2019, Chengdu, Sichuan, China.(2019).

    Le Ma, Jie Zhang, Bo Wang, Chao Lei, Yajie Li, Qian Qu, Bo Xiao, Yutong Wang, Pingliang Yuan. Quantum Noise Stream Cipher of Optical Communication in Physical Layer Security[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230603
    Download Citation