• Journal of Inorganic Materials
  • Vol. 37, Issue 8, 897 (2022)
Qi LIU, Can ZHU, Guizhen XIE, Jun WANG, Dongming ZHANG, and Gangqin SHAO*
Author Affiliations
  • State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • show less
    DOI: 10.15541/jim20210773 Cite this Article
    Qi LIU, Can ZHU, Guizhen XIE, Jun WANG, Dongming ZHANG, Gangqin SHAO. Optical Absorption and Photoluminescence Spectra of Ce-doped SrMgF4 Polycrystalline with Superlattice Structure [J]. Journal of Inorganic Materials, 2022, 37(8): 897 Copy Citation Text show less
    References

    [1] I N OGORODNIKOV, V A PUSTOVAROV, L I ISAENKO et al. Radiation-stimulated processes in SrMgF4 single crystals irradiated with fast electrons. Optical Materials, 111234(2021).

    [2] V S SINGH, P D BELSARE, S V MOHARIL. Wet chemical synthesis and study of luminescence in some Eu2+ activated AEMgF4 hosts. Physics of the Solid State, 2318-2324(2021).

    [3] A Y SOFRONOVA, V A PUSTOVAROV, I N OGORODNIKOV. Radiation-induced defects in SrMgF4 single crystals irradiated by fast electrons. AIP Conference Proceedings, 020172(2019).

    [4] A C GARCIA-CASTRO, W IBARRA-HERNANDEZ, E BOUSQUET et al. Direct magnetization-polarization coupling in BaCuF4. Physical Review Letters, 117601(2018).

    [5] V V ATUCHIN, A A GOLOSHUMOVA, L I ISAENKO et al. Crystal growth and electronic structure of low-temperature phase SrMgF4. Journal of Solid State Chemistry, 89-93(2016).

    [6] J F SCOTT. Searching for new ferroelectrics and multiferroics: a user’s point of view. npj Computational Materials, 15006(2015).

    [7] F KUBEL, H HAGEMANN, H BILL. Synthesis, crystal structures and spectroscopic investigations on samarium-doped mixed Ba1-δSrδMgF4 crystals. Materials Research Bulletin, 263-269(1997).

    [8] B QUI, E BANKS. The binary system SrF2-MgF2: phase diagram and study of growth of SrMgF4. Materials Research Bulletin, 1185-1189(1982).

    [9] E BANKS, S NAKAJIMA, M SHONE. New complex fluorides EuMgF4, SmMgF4, SrMgF4, and their solid solutions: photoluminescence and energy transfer. Journal of the Electrochemical Society, 2234-2239(1980).

    [10] M EIBSCHÜTZ, H J GUGGENHEIM. Antiferromagnetic-piezoelectric crystals: BaMF4(M = Mn, Fe, Co and Ni). Solid State Communications, 737-739(1968).

    [11] N ISHIZAWA, K SUDA, B E ETSCHMANN et al. Monoclinic superstructure of SrMgF4 with perovskite-type slabs. Acta Crystallographica Section C, 784-786(2001).

    [12] S C ABRAHAMS. Structurally ferroelectric SrMgF4. Acta Crystallographica Section B, 34-37(2002).

    [13] S V MEL’NIKOVA, L I ISAENKO, A A GOLOSHUMOVA et al. Investigation of the ferroelastic phase transition in the SrMgF4 pyroelectric crystal. Physics of the Solid State, 757-760(2014).

    [14] A P YELISSEYEV, X X JIANG, L I ISAENKO et al. Structures and optical properties of two phases of SrMgF4. Physical Chemistry Chemical Physics, 500-508(2015).

    [15] M YAMAGA, N KODAMA. Vacuum ultraviolet spectroscopy of Ce3+-doped SrMgF4with superlattice structure. Journal of Physics- Condensed Matter, 6033-6044(2006).

    [16] H HAGEMANN, F KUBEL, H BILL et al. 5D07F0 transitions of Sm2+ in SrMgF4. Journal of Alloys and Compounds, 194-196(2004).

    [17] Z C CAO, C S SHI, J Z NI. The valency and spectra of samarium ions in MF2-MgF2 (M=Ca, Sr, Ba). Journal of Luminescence, 221-224(1993).

    [18] S TAMBOLI, R M KADAM, S J DHOBLE. Photoluminescence and electron paramagnetic resonance properties of a potential phototherapic agent: MMgF4: Gd3+ (M = Ba, Sr) sub-microphosphors. Luminescence, 1321-1328(2016).

    [19] H Y TIAN, H Y SHEN, Q H YANG et al. Synthesis, characterization and fluorescent properties of complex fluoride BaNiF4: Ce3+. Advanced Materials Research, 56-60(2012).

    [20] G X ZHU, M B XIE, Q YANG et al. Hydrothermal synthesis and spectral properties of Ce3+ and Eu2+ ions doped KMgF3 phosphor. Optics and Laser Technology, 162-167(2016).

    [21] B P KORE, S TAMBOLI, N S DHOBLE et al. Efficient resonance energy transfer study from Ce3+ to Tb3+ in BaMgF4. Materials Chemistry and Physics, 233-244(2017).

    [22] S JANSSENS, G V M WILLIAMS, D CLARKE. Synthesis and characterization of rare earth and transition metal doped BaMgF4 nanoparticles. Journal of Luminescence, 277-283(2013).

    [23] S WATANABE, T ISHII, K FUJIMURA et al. First-principles relativistic calculation for 4f-5d transition energy of Ce3+ in various fluoride hosts. Journal of Solid State Chemistry, 2438-2442(2006).

    [24] M YAMAGA, K HATTORI, N KODAMA et al. Superlattice structure of Ce3+-doped BaMgF4 fluoride crystals-X-ray diffraction, electron spin-resonance, and optical investigations. Journal of Physics-Condensed Matter, 10811-10824(2001).

    [25] N KODAMA, T HOSHINO, M YAMAGA et al. Optical and structural studies on BaMgF4:Ce3+ crystals. Journal of Crystal Growth, 492-496(2001).

    [26] M YAMAGA, T IMAI, N KODAMA. Optical properties of two Ce3+-site centers in BaMgF4: Ce3+ crystals. Journal of Luminescence, 992-994(2000).

    [27] J M REY, H BILL, D LOVY et al. Europium doped BaMgF4, an EPR and optical investigation. Journal of Alloys and Compounds, 60-65(1998).

    [28] E HAYASHI, K ITO, S YABASHI et al. Vacuum ultraviolet and ultraviolet spectroscopy of BaMgF4 co-doped with Ce3+ and Na+. Journal of Luminescence, 69-74(2006).

    [29] E HAYASHI, K ITO, S YABASHI et al. Ultraviolet irradiation effect of Ce3+-doped BaMgF4 crystals. Journal of Alloys and Compounds, 883-885(2006).

    [30] V A PUSTOVAROV, I N OGORODNIKOV, S I OMELKOV et al. Electronic excitations and luminescence of SrMgF4 single crystals. Physics of the Solid State, 456-467(2014).

    [31] I N OGORODNIKOV, V A PUSTOVAROV, S I OMELKOV et al. A far ultraviolet spectroscopic study of the reflectance, luminescence and electronic properties of SrMgF4 single crystals. Journal of Luminescence, 872-879(2014).

    [32] G SCHOLZ, S BREITFELD, T KRAHL et al. Mechanochemical synthesis of MgF2-MF2 composite systems (M = Ca, Sr, Ba). Solid State Sciences, 32-41(2015).

    [33] Q LIU. Photoluminescence properties of rare-earth Ce-doped SrMgF4 powder prepared through a wet-chemical route. Wuhan: Master Thesis of Wuhan University of Technology(2019).

    [34] D M ZHANG, Q LIU, G Q SHAO et al. The Ce-doped SrMgF4 fluorescent materials and their preparation method thereof. Chinese Invention Patent, Appl.

    [35] C VEITSCH, F KUBEL, H HAGEMANN. Photoluminescence of nanocrystalline SrMgF4 prepared by a solution chemical route. Materials Research Bulletin, 168-175(2008).

    [36] R D SHANNON. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, 751-767(1976).

    [37] Z P LIU, Y XU, Z H LI et al. Sulfur-resistant methanation over MoO3/CeO2-ZrO2 catalyst: influence of Ce-addition methods. Journal of Energy Chemistry, 31-38(2019).

    [38] D W JEONG, H S NA, J O SHIM et al. A crucial role for the CeO2-ZrO2 support for the low temperature water gas shift reaction over Cu-CeO2-ZrO2 catalysts. Catalysis Science & Technology, 3706-3713(2015).

    [39] W P SHAN, F D LIU, H HE et al. A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 100-106(2012).

    [40] E V D LOEF, P DORENBOS, C W E EIJK et al. Scintillation properties of LaBr3: Ce3+ crystals: fast, efficient and high-energy- resolution scintillators. IEEE Transactions on Nuclear Science, 254-258(2002).

    [41] G BLASSE, A BRIL. Investigation of some Ce3+-activated phosphors. Journal of Chemical Physics, 5139-5145(1967).

    [42] P DORENBOS, L PIERRON, L DINCA et al. 4f-5d spectroscopy of Ce3+ in CaBPO5, LiCaPO4 and Li2CaSiO4. Journal of Physics Condensed Matter, 511-520(2003).

    Qi LIU, Can ZHU, Guizhen XIE, Jun WANG, Dongming ZHANG, Gangqin SHAO. Optical Absorption and Photoluminescence Spectra of Ce-doped SrMgF4 Polycrystalline with Superlattice Structure [J]. Journal of Inorganic Materials, 2022, 37(8): 897
    Download Citation