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Abstract: Rare-earth (RE) ions doped perovskite-related fluorides are candidates for tunable optical materials. In this

work, StMgF,: xCe (x=0, 0.007, 0.013 and 0.035, in mole) powders were synthesized by a precipitation method. X-ray

diffraction (XRD) patterns indicate that the obtained phosphors possess monoclinic superstructures. Electrovalence

analysis confirms the existence of Ce’/Ce*" mixed valence. Two distinct fluorescence bands B and C were observed

with different excitation wavelengths in the ultraviolet (UV) light region. Energy levels were modified strongly by the

crystal field derived from monoclinic superstructures when the symmetry of Ce’*-polyhedra changed from high- to

low- symmetry.
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Perovskite-related SrMgF, (SMF) is a ferroelectric
with the largest bandgap (£,=12.50 eV) in nature!' "%,
Banks et al®® identified its orthorhombic structure
(Cmcm, Space Group No. 63, Z = 4; Pdf 89-1391/ ICSD
86248) firstly in 1980. In 2001, Ishizawa et al!'
determined SrMgF,: 0.00006Ce crystal at 25 C as a
monoclinic superstructure. In 2002, Abrahams!'? predicted
that a phase transition from the ferroelectric to paraelectric
state at T.~177 C

monoclinic symmetry change: m-SrMgF, (P112,, S.GNo.4,

7=12; ICSD 279588) ——7E=203710C o 1 SrMgF,
(P112y/m, S.GNo. 11, Z = 12; ICSD 94669).
Mel’'nikova et al'™ (2014) and Yelisseyev et all'¥
(2015) in the same group confirmed elaborately a low- to
high- temperature (LT—>HT) phase transition at ~205 C,
close to 177 °‘C which predicted by Abrahams''?:

m-SrMgF, (P2,, S.GNo.4, Z=12; CCDC 1029322 / ICSD

193583) — 28D C o 4rth-StMgF, (Cme2,, S.G.No.36,

Z=4; CCDC 1029321/ICSD 193584)!!3-14],
As for RE-doped AMF, (A-one of the alkaline,
alkali-earth or RE elements; M-one of the alkali-earth or

accompanied by two kinds of

transition-metal (TM) elements with the octahedral
coordination MFg), the bright emission from RE ions can
be widely applied in fluorescent lamps, plasma display
panels, light emitting diodes (LEDs), solar concentrators,

phosphors and bulk lasers because AMF, is the effective
acceptor for RE dopants. Examples are listed as follows:
Ce? Mg 117G /B P doped StMgF,
Ce*'-doped BaNiF,"”), Ce*'/Eu*'-doped and (Ce**, Eu®")
co-doped KMgF, 20, Ce®* 126N 22/py 2 12227y G g 118y
Tb*.doped, (Ce**, Na")***! co-doped and (Ce*",
Mn*")?* co-doped BaMgF,, and so on. The single-crystal
SrMgF, can be synthesized by a vertical Bridgman me-
thod using binary fluorides (SrF,/MgF,) as raw mate-
rials!>'*!1*3931 Methods to prepare SrMgF, polycrystal-
line powders include the solid-state method™®*'” using
binary fluorides (SrF,/MgF,) directly as well, the me-
chanochemical method using Mg(OH),, Sr(Ac), and
NH,FP? and the solution chemical route using soluble
salts and NH,F/NH,HF,>**3% a5 raw materials.

In this work, StMgF,: Ce polycrystalline powders
were prepared and their phase structure, electrovalence
and photoluminescence (PL) spectra were investigated.

1 Experimental

Ce-doped SrMgF, powders were synthesized through
a precipitation method using SrCO; (=99.99%, mass
percent), Mg(CH;COO),-4H,0 (=99.9%, mass percent),
Ce(NO3);-6H,0 (=99.99%, mass percent), NH,HF,
(=98.0%, mass percent) and CH;COOH (=99.5%,
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mass percent) as raw materials . Molar ratios of

initial mixtures were (1-x)StCO5: 1 Mg(CH;COO),-4H,0:

xCe(NOs);-6H,0. The SrCO; was dissolved by mole
percent 10% excessive diluted acetic acid (0.2 mol/L),
then the Mg(CH;C0OO0),-4H,0 and Ce(NO;);-6H,0 were
dissolved in the solution successively according to the
stoichiometric amount. The mixed solution was added
dropwise to mass percent 10% excessive diluted NH4HF,
(0.3 mol/L) and kept stirring in a Teflon beaker. A white
floc was formed and then turned into a precipitation. The
precipitation was dried at 80 ‘C for 48 h, washed by
deionized water, dried again at 80 “C for 3 h. Last, dried
white powders were calcined at 400 °C in air for 1 h,
resulting in the final StMgF,: xCe powders (x = 0, 0.007,
0.013 and 0.035, mole composition measured by Induc-
tively Coupled Plasma-optical emission spectrometer (ICP);
samples labeled hereafter as SMF, SMF: 0.007Ce,
SMF: 0.013Ce and SMF: 0.035Ce). The difference between
the measured and nominal mole composition came
mainly from the purity, hydrate content and filtration
process”®'!. Reaction equations are listed as follows:

SrCO,+ HAc +H,0 —=22T 5 Si(Ac), solution + CO, T

Mg(Ac), -4H,0 + H,0 —RE14T 5 Mo(Ac), solution
Ce(NO;); -6H,0 + H,0 —X=14_, Ce(NO, ), solution

+ NH4HF, (0.3 mol/L, +10wt%) + H,0, ~0.15 mol/L
added dropwise, stirred, dried @80 C for 48 h, in air

T, , Ce)bps + 3T+ cT + 3T + HO1 +
Sr, Mg, Ce)F NH HA HNO H,O
HF T washed, dried, calcined @400 °C for 1 h, in air SngF4: xCe

(x=10,0.007,0.013 and 0.035).

The crystal structure and phase purity of samples were
identified by XRD (Empyrean, PANalytical Ltd., Nether-
lands) with step size of 0.01° and scanning rate of
0.02 (°)/s, using the CuKa, radiation (4 = 0.15406 nm at
40 kV and 40 mA). The actual compositions of samples
were determined by ICP (Prodigy 7, Leeman Labs Inc.,
USA), while powders dissolved completely in a nitrohy-
drochloric acid in advance. Electrovalence measurements
were carried by an X-ray photoelectron spectrograph
(XPS, Multilab 2000, VG Inc., USA) equipped with a
focused monochromatized AlKo X-ray source (hv =
1486.6 eV). Binding energies were calibrated by fixing
the saturated hydrocarbon component of the Cls peak at
284.8 eV. Absorption spectra were obtained using an
ultraviolet/visual/near-infrared (UV/VIS/NIR) spectro-
meter (Lambda 750S, PerkinElmer, USA). Photolumine-
scence excitation and emission spectra were recorded on
a fluorescence spectrophotometer (F-7000, Hitachi, Japan)
at bias potential of 700 V. All measurements were carried
out at room temperature (RT).

2 Resultsand discussion

2.1 Phasestructures

In Fig. 1, XRD patterns of Ce-doped StMgF, powders
reveal that monoclinic LT-SrMgF, with superstructures
(P2,, S.GNo. 4, Z=12; CCDC 1029322/ ICSD 193583!'%)
are formed in SMF, SMF: 0.007Ce and SMF: 0.013Ce
samples. The monoclinic superstructures have doubled a
and tripled c¢ cell-length via the orthorhombic unit cell in
HT-SrMgF, phases (Cmc2,, S.GNo.36, Z = 4; CCDC
1029321/ICSD 193584)!*'Y). When the dopant content
reached 3.5% (SMF: 0.035Ce), the cubic SrF, impurity
was found. There was no indication of MgF, phase in all
samples.

Compared to XRD patterns of orthorhombic HT-
SrMgF,, those of monoclinic LT-phases with superstruc-
tures are almost the same besides some characteristic
peaks appearing at 26=16.1°, 18.1°, 21.6°, (26.8£0.2)°,
and so on. This confirms the formation of SrMgF,: xCe
perovskite-like fluoride solid solutions (x=0, 0.007,
0.013 and 0.035). Considering that Ce*"*" and Sr** ions
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Fig. 1 XRD patterns of StMgF,: xCe powders (x = 0, 0.007,
0.013, and 0.035)
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have close effective ionic radii ()% and the coordina-
tion number (CN) of Sr*" in monoclinic LT-SrMgF, is
T—11HL4151 4t can be concluded that monoclinic LT-
SrMgF, with superstructures originate from substitution
by the Ce™*" (7 s+ =0.107-0.134 nm while CN__ ;. =7-12;

Toetr =0.097-0.114 nm while CN_.. =8-12) for Sr**

C e4+

(72 =0.121-0.144 nm while CNg,. = 7-12) in the

Sr2+
polyhedra composed of F~ ligand ions.

2.2 XPSresults

The core level XPS spectra of SMF, SMF: 0.007Ce,
SMF: 0.013Ce and SMF: 0.035Ce powders are shown in
Fig. 2. Spectral features are fitted with Gaussian distri-
butions and then peak positions and areas are determined.
A high symmetric peak originating from the Fls is ob-
served at ~685 eV. The Ols peak at 532.5 eV is deter-
mined as the absorbed oxygen (530.0-531.5 eV) other
than the lattice oxygen (527.5-530.0 eV)!"’\. The peak at
50.6 eV is from Mg2p. The Sr3d spectra show a pair of
spin-orbit split components at 135.5 eV (Sr3d;,) and
133.5eV (Sr 3ds,)"). Two major peaks at 902.6 and
884.3 ¢V found in SMF: 0.007Ce, SMF: 0.013Ce and
SMF: 0.035Ce powders are determined as Ce3d;, and
Ce3ds, doublets, which provides direct evidence of
Ce*'-doping in the StMgF, host (Fig. 2(a))P"*.

The coexistence of Ce*" and Ce*" in SMF: 0.007Ce,
SMF: 0.013Ce and SMF: 0.035Ce samples are evidenced
by a shoulder observed on main peaks of Ce3d;, and
Ce3ds;, (Fig. 2(b)). They are composed of eight peaks
corresponding to four pairs of spin-orbit doublets accor-
ding to previous reports”’*"). Peaks marked by u, u’, u"
and u" are attributed to Ce3d;/,, whereas those marked by
v, v/, v"and v" are assigned to Ce3ds,. Sub-bands labeled
1'(902.6 eV) and v/(884.3 eV) represent the 3d'°4f" initial

electronic state corresponding to Ce’*, and sub-bands
labeled ©(900.7 eV), u"(906.0 eV), u"(916.3 eV),
v(882.3 eV), v"(887.7 eV) and v"(898.0 eV) represent the
3d'%4f" state of Ce*". The Ce*'/(Ce*"+Ce*") ratios in SMF:
0.007Ce, SMF: 0.013Ce and SMF: 0.035Ce samples are
53.9%, 50.9% and 44.1%, respectively. The ratios decreased
with the Ce content increasing.
2.3 Absorption / photoluminescence spectra
Absorption spectra of SrMgF,:xCe (x=0, 0.007, 0.013
and 0.035) at RT consist of four bands (Fig. 3) at 212 nm
(ar), 226 nm (a,), (258+4) nm (B) and (291+ 1) nm (C) in
the UV region (the errors for wavelengths represent
wavelength range/change/shift originated from different
Ce-doping contents, the same hereinafter). The band a, is
close to the edge of UV region. The band a, is associated
with radiative recombination in some non-identified
point defects such as color centers based on anion
vacancies, structural defects in cation sub-lattices or
impurity defects. Bands B and C correspond to the
energy levels of 5d' excited states of Ce**-polyhedral'™.
Fluorescence bands of emission spectra (Fig. 4) are
obtained with double peaks at (313£3)/(339+3) nm when
samples are excited at 1,=258 nm (band B) and 295 nm
(band C), coincided with two of the absorption bands.
Stokes shift (A4s) represents the wavelength difference
between positions of the band maxima of absorption and
fluorescence emission spectra of the same electronic
transition. The band C decomposes into two Gaussians
(i.e. excitation band C@~316/339 nm) as a function of

2
energy in the form I(x)= ZIZ- exp(—(xz—);”)J , where
w
I; is the amplitude, x, is the peak center and x,, the peak
width!'*?* They are assigned to the electric dipole-
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Fig.2 XPS spectra of SrMgF,: xCe powders (x =0, 0.007, 0.013 and 0.035)
(a) Whole pattern; (b) Ce3d
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allowed 5d-4f transitions, from the 4f! (2F5/2) ground
state to the excited-level 5d' (2D3/2) and the modified
excited-level 5d' (ZD;/2 ) by the crystal field (Fig. 5), i.e.

=295 nm

4f! (21:5/2) 54! (2D§/2) Aom=~315/338(3) nm

4f' (%K) )4t (PE,, P4 Therefore, the energy
difference ( 4y ) between 4f' (’F,) and 4f' (’E;;,)

levels is ~2147 cm™', in good agreement with the reported
value of 2200, 2000 and 1795""cm™. It can be
approximated to the crystal-field-splitting energy of ground

states between #,, (d,,, d d,) and ¢ (d.,

yz 2
dxz_yz) for Ce*" ions. Otherwise, the intensity of

excitation band C increases with increment of the Ce®*
concentration (0<x<<0.035%).

Excitation spectra (Fig. 4) obtained by monitoring the
fluorescence intensity at A, = 315/336 nm include both
components of excitation bands B and C, because of the
overlap of the high energy component of band C and low
energy component of band B!">**. The zero-phonon line,
where excitation and emission spectra overlap with each
other, were observed at 310 nm. In Ce-doped SrMgF,,
absorption/excitation bands of Ce®" ion with [Xe]4f'5d%6s"
electronic configuration in trigonal symmetry®® corres-
pond to electronic-dipole transition, which is from the 4f'
(2F5/2, 712) ground-state to the 5d! (2D3/2, 55) excited-state.
The energy level of the excited-state 5d! (2D3/2) can be
estimated from the excitation band B ((264+2)/
(264+1) nm). Thus, B site is assigned to Ce’" occupying
the ordinary sites of Sr*"1'">***®! Lowering symmetry of
C site is derived from the spread of B excitation bands.
Taking account of the Ce’’-concentration dependence
and inhomogeneous broadening of band C ((293+2)/
(293+1) nm), C site is assigned to Ce’" with the dis-
tribution of the crystal field. Energy levels of the 5d'
excited states were modified strongly by the crystal field
when the symmetry of Ce’"-polyhedra changed from

L SMF: 0.035Ce
L - SMF: 0.013Ce
© 9 _ :0.
Sl T " —— SMF: 0.007Ce
LV 2 -
:é [\ ~226 nm B StMgF
B neYo o 254-262nm €
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S 40 r .
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O 1 1 1 1 1 1 1 1 1 1 1 1 1
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Fig. 3 Absorption spectra of SrMgF,: xCe powders (x=0,
0.007, 0.013, and 0.035)
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Fig. 5 Energy levels observed in SrMgF,: xCe powders

(x=0.007, 0.013, and 0.035)

high- (orthorhombic) to low- (monoclinic) symme-
fryl1524-2528]

3 Conclusions

In the synthesized SrMgF,: xCe (x=0, 0.007, 0.013
and 0.035) powders, pure phases with monoclinic
superstructures were found at x=0, 0.007 and 0.013.
Absorption and photoluminescence spectra show Ce-
doped SrMgF, samples have two primary absorption
peaks at 258/295 nm and two emission peaks at 315/
336 nm in the UV region at room temperature, which
have similar line-shape and line-width except for their
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peak shift. They are assigned to the Ce’*-polyhedra with
a strong crystal field as a consequence of the monoclinic
superstructures.
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