• Laser & Optoelectronics Progress
  • Vol. 60, Issue 7, 0712006 (2023)
Keyuan Yang, Xin Yao*, Jiamin Li, Guoyong Wang, and Zhongying Zhang
Author Affiliations
  • Institute of Space Communication and Navigation Technology, Fifth Research Institute (Xi'an) of China Aerospace Science and Technology Corporation Limited, Xi'an 710100, Shaanxi, China
  • show less
    DOI: 10.3788/LOP220481 Cite this Article Set citation alerts
    Keyuan Yang, Xin Yao, Jiamin Li, Guoyong Wang, Zhongying Zhang. High-Precision Optical Carrier Phase Measurement Technology Based on Two-Satellite Formation[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0712006 Copy Citation Text show less
    References

    [1] Jiang Y, Zhang S H. Research progress on fiber optical laser interferometry in signal demodulation of EFPI sensor[J]. Laser & Optoelectronics Progress, 58, 1306017(2021).

    [2] Hao Y W, Kong X X, Cai Q S et al. Analysis of effect of circulator noise on laser interferometry system[J]. Acta Optica Sinica, 41, 0912003(2021).

    [3] Abbott B P, Abbott R, Abbott T D et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 116, 061102(2016).

    [4] Danzmann K, Diger A R. LISA technology concept, status, prospects[J]. Classical and Quantum Gravity, 20, S1-S9(2003).

    [5] Luo Z R, Wang Y, Wu Y L et al. The Taiji program: a concise overview[J]. Progress of Theoretical and Experimental Physics, 2021, 05A108(2020).

    [6] Luo J, Chen L S, Duan H Z et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 33, 035010(2016).

    [7] DeBra D B. Drag-free control for fundamental physics missions[J]. Advances in Space Research, 32, 1221-1226(2003).

    [8] Livas J C, Thorpe J I, Numata K et al. Frequency-tunable pre-stabilized lasers for LISA via side-band locking[J]. Classical and Quantum Gravity, 26, 094016(2009).

    [9] Schwarze T S, Barranco G F, Penkert D et al. Picometer-stable hexagonal optical bench to verify LISA phase extraction linearity and precision[J]. Physical Review Letters, 122, 081104(2019).

    [10] Wang Z, Sha W, Chen Z et al. Preliminary design and analysis of telescope for space gravitational wave detection[J]. Chinese Optics, 11, 131-151(2018).

    [11] Gao R H, Liu H S, Zhao Y et al. Laser acquisition experimental demonstration for space gravitational wave detection missions[J]. Optics Express, 29, 6368-6383(2021).

    [12] Gerberding O, Diekmann C, Kullmann J et al. Readout for intersatellite laser interferometry: measuring low frequency phase fluctuations of high-frequency signals with microradian precision[J]. The Review of Scientific Instruments, 86, 074501(2015).

    [13] Tinto M, Dhurandhar S V. Time-delay interferometry[J]. Living Reviews in Relativity, 17, 6(2014).

    [14] Wanner G. Space-based gravitational wave detection and how LISA Pathfinder successfully paved the way[J]. Nature Physics, 15, 200-202(2019).

    [15] Armano M, Audley H, Baird J et al. LISA pathfinder platform stability and drag-free performance[J]. Physical Review D, 99, 082001(2019).

    [16] Luo Z R, Zhang M, Jin G et al. Introduction of Chinese space-borne gravitational wave detection program “Taiji” and “Taiji-1” satellite mission[J]. Journal of Deep Space Exploration, 7, 3-10(2020).

    [17] Li Y P, Liu H S, Zhao Y et al. Demonstration of an ultraprecise optical bench for the Taiji space gravitational wave detection pathfinder mission[J]. Applied Sciences, 9, 2087(2019).

    [18] Luo J, Bai Y Z, Cai L et al. The first round result from the TianQin-1 satellite[J]. Classical and Quantum Gravity, 37, 185013(2020).

    [19] Mei J W, Bai Y Z, Bao J H et al. The TianQin project: current progress on science and technology[J]. Progress of Theoretical and Experimental Physics, 2021, 05A107(2020).

    [20] Abich K, Abramovici A, Amparan B et al. In-orbit performance of the GRACE follow-on laser ranging interferometer[J]. Physical Review Letters, 123, 031101(2019).

    [21] Faller J E, Bender P L, Chan Y M et al. A possible laser gravitational wave experiment in space[R](1984).

    [22] Tinto M, Estabrook F B, Armstrong J W. Time-delay interferometry for LISA[J]. Physical Review D, 65, 082003(2002).

    [23] Tinto M, Hartwig O. Time-delay interferometry and clock-noise calibration[J]. Physical Review D, 98, 042003(2018).

    [24] de Vine G, Ware B, McKenzie K et al. Experimental demonstration of time-delay interferometry for the laser interferometer space antenna[J]. Physical Review Letters, 104, 211103(2010).

    [25] Hartwig O, Bayle J B. Clock-jitter reduction in LISA time-delay interferometry combinations[J]. Physical Review D, 103, 123027(2021).

    [26] Gerberding O, Diekmann C, Kullmann J et al. Readout for intersatellite laser interferometry: measuring low frequency phase fluctuations of high-frequency signals with microradian precision[J]. The Review of Scientific Instruments, 86, 074501(2015).

    Keyuan Yang, Xin Yao, Jiamin Li, Guoyong Wang, Zhongying Zhang. High-Precision Optical Carrier Phase Measurement Technology Based on Two-Satellite Formation[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0712006
    Download Citation