• Laser & Optoelectronics Progress
  • Vol. 60, Issue 7, 0712006 (2023)
Keyuan Yang, Xin Yao*, Jiamin Li, Guoyong Wang, and Zhongying Zhang
Author Affiliations
  • Institute of Space Communication and Navigation Technology, Fifth Research Institute (Xi'an) of China Aerospace Science and Technology Corporation Limited, Xi'an 710100, Shaanxi, China
  • show less
    DOI: 10.3788/LOP220481 Cite this Article Set citation alerts
    Keyuan Yang, Xin Yao, Jiamin Li, Guoyong Wang, Zhongying Zhang. High-Precision Optical Carrier Phase Measurement Technology Based on Two-Satellite Formation[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0712006 Copy Citation Text show less

    Abstract

    The payload of laser ranging interferometer based on the two-satellite formation can on-orbit show numerous vital technologies in the space-based gravitational wave detection mission. In this mission, to realize the picometer-level precision in the inter-satellite displacement measurement, it is required to achieve the optical carrier phase measurement with an accuracy of better than 10-6 cycle/Hz1/2 in the mHz frequency range. The sample jitter of the phase meter's analog-to-digital converter is the bottleneck limiting the precision of the phase measurement. By applying the techniques of pilot tone and clock side-band modulation, the sampling jitter noise could be suppressed in the data post-processing algorithm. The clock side-band modulation method towards time-delay interferometry in the three-satellite formation is extended to the two-satellite formation-based dual optical carrier phase measuring system. The systematic approach is proposed to suppress the sampling jitter noise in the optical carrier phase measurement considering the inter-satellite Doppler frequency shift. The technique could be applied in the next-generation earth gravitational detection mission to on-orbit demonstrate the phase meter technology towards space-based gravitational wave detection. Furthermore, it could be used in the high-precision inter-satellite laser time and frequency transfer mission, supporting the future global navigation satellite system.
    φ˜ther=12π1(C/N0)1+12TcohC/N0, 
    φ˜Q=22πVmaxV02-N6fs, 
    φ˜A=f0τ˜A
    τ˜jitter=τ˜A2+τ˜C2
    φ˜C=y(f)f02πf,
    σAllen2ln2fy(f), 
    δφ1(t)=f1,carr f1,pδφ1,p(t),
    φ1(t)=p1(t)-p2(t-τ)+a1q1(t)φ2(t)=p1(t-τ)-p2(t)+a2q2(t)
    φmain(t)=φ1(t)-Dτφ2(t),
    φmain(q)=p1-p1,2τ+a1q1-a2q2,τ=p1-p1,2τ+v1-v2·q1v1,SB-q2,τv2,SB
    φ1,SB(t)=p1(t)+q1(t)-p2(t-τ)+q2(t-τ)+b1q1(t),
    φ1-φ1,SB=q2,τ-q1+a1q1-b1q1=q2,τ-v2,SBv1,SBq1
    γφ1,SB-φ1/v2,SB
    γ=q2,τv2,SB-q1v1,SB,
    φmain(corr)=φmain(q)+v1-v2γ=φ1(t)-Dτφ2(t)+v1-v2φ1,SB-φ1/v2,SB
    a1=ν1-v2(1-L˙/c)/v1,SBa2=ν1(1-L˙/c)-v2/v2,SBb1=(ν1-v1,SB)-(ν2-v2,SB)(1-L˙/c)/v1,SB
    φmain(q)=p1-p2,2τ+a1q1-a2q2,τ=p1-p2,2τ+v1-v2q1v1,SB-q2,τv2,SB+v2L˙cq1v1,SB-v1L˙cq2,τv2,SB=p1-p2,2τ+v1-v2q1v1,SB-q2,τv2,SB+v1L˙cq1v1,SB-q2,τv2,SB-v1-v2L˙cq1v1,SB
    φmain(q)p1-p2,2τ+v1-v2+v1L˙cq1v1,SB-q2,τv2,SB
    γφ1,SB-φ1/v2,SB=q2,τv2,SB-q1v1,SB+L˙cq1v1,SB
    γq2,τv2,SB-q1v1,SB
    φmain(corr)φmain(q)+v1-v2+v1L˙cγ=φ1(t)-Dτφ2(t)+v1-v2+v1L˙c φ1,SB-φ1v2,SB
    φmain(corr)=φ1(t)-Dτφ2(t)+f2,carr+2v1L˙cφ1,SB-φ1v2,SB
    φmain(corr)=φ1-f1,carrf1,p(φ1,p-f1,pt)-Dτφ2-f2,carrf2,p(φ2,p-f2,pt)+f2,carr+2v1L˙cφ1,SB-f1,SBf1,p(φ1,p-f1,pt)-φ1-f1,carrf1,p(φ1,p-f1,pt)v2,SB,
    δφmain(corr)=2v1δL˙cq1v1,SB-q2,τv2,SB
    s˜<80nm/Hz1/21+3 mHzf21+10 mHzf2
    Keyuan Yang, Xin Yao, Jiamin Li, Guoyong Wang, Zhongying Zhang. High-Precision Optical Carrier Phase Measurement Technology Based on Two-Satellite Formation[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0712006
    Download Citation