• Laser & Optoelectronics Progress
  • Vol. 60, Issue 3, 0312012 (2023)
Fei Long, Fajia Zheng, Peizhi Jia, Bin Zhang, Jiakun Li, and Qibo Feng*
Author Affiliations
  • Key Laboratory of Luminescence and Optical Information Technology, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
  • show less
    DOI: 10.3788/LOP222597 Cite this Article Set citation alerts
    Fei Long, Fajia Zheng, Peizhi Jia, Bin Zhang, Jiakun Li, Qibo Feng. Research Status and Development Trend of Laser Multi-Degree-of-Freedom Simultaneous Measurement[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312012 Copy Citation Text show less
    References

    [1] Fan K C, Wang H Y, Yang H W et al. Techniques of multi-degree-of-freedom measurement on the linear motion errors of precision machines[J]. Advanced Optical Technologies, 3, 375-386(2014).

    [2] Du Z C, Yang J G, Feng Q B. Research status and trend of geometrical error measurement of CNC machine tools[J]. Aeronautical Manufacturing Technology, 60, 34-44(2017).

    [3] Zheng F J. Study on system and application for measuring 21 geometric errors of three linear axes of machine tools[D](2021).

    [4] Kuang C F. Research on simultaneous measurement of multiple degrees of freedom by laser[D](2006).

    [5] Tan Y D, Xu X, Zhang S L. Precision measurement and applications of laser interferometry[J]. Chinese Journal of Lasers, 48, 1504001(2021).

    [6] Hu P C, Chang D, Tan J B et al. Displacement measuring grating interferometer: a review[J]. Frontiers of Information Technology & Electronic Engineering, 20, 631-654(2019).

    [7] Fan K C, Liu Y S, Chen Y J et al. A linear diffraction grating interferometer with high accuracy[J]. Proceedings of SPIE, 6280, 628008(2006).

    [8] Lin C B, Yan S H, Du Z G et al. Symmetrical short-period and high signal-to-noise ratio heterodyne grating interferometer[J]. Chinese Optics Letters, 13, 100501(2015).

    [9] Tan J B, Hu P C, Xing X. Double frequency laser grating interference two-dimensional measurement method[P].

    [10] Pollinger F, Meiners-Hagen K, Wedde M et al. Diode-laser-based high-precision absolute distance interferometer of 20 m range[J]. Applied Optics, 48, 6188-6194(2009).

    [11] Li G C, Fang Y H, Zhang H et al. Correction of power-to-phase conversion for distance error measurement using femtosecond laser synthetic wavelength method[J]. Chinese Journal of Lasers, 48, 0104002(2021).

    [12] Kikuta H, Iwata K, Nagata R. Distance measurement by the wavelength shift of laser diode light[J]. Applied Optics, 25, 2976-2980(1986).

    [13] Gao W, Kim S W, Bosse H et al. Measurement technologies for precision positioning[J]. CIRP Annals, 64, 773-796(2015).

    [14] Dai X L, Katuo S T. High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry[J]. Measurement Science and Technology, 9, 1031-1035(1998).

    [15] Kim S W. Combs rule[J]. Nature Photonics, 3, 313-314(2009).

    [16] Udem T, Holzwarth R, Hänsch T W. Optical frequency metrology[J]. Nature, 416, 233-237(2002).

    [17] Wu T F, Zhou Q, Lin J R et al. Frequency scanning interferometry absolute distance measurement[J]. Chinese Journal of Lasers, 48, 1918002(2021).

    [18] Zhou S Y, Xiong S L, Zhu Z B et al. Simplified phase-stable dual-comb interferometer for short dynamic range distance measurement[J]. Optics Express, 27, 22868-22876(2019).

    [19] Joo K N, Kim S W. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser[J]. Optics Express, 14, 5954-5960(2006).

    [20] Minoshima K, Matsumoto H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser[J]. Applied Optics, 39, 5512-5517(2000).

    [21] Trocha P, Karpov M, Ganin D et al. Ultrafast optical ranging using microresonator soliton frequency combs[J]. Science, 359, 887-891(2018).

    [22] Minamikawa T, Hsieh Y D, Shibuya K et al. Dual-comb spectroscopic ellipsometry[J]. Nature Communications, 8, 610(2017).

    [23] Wu G H, Zhou S Y, Yang Y T et al. Dual-comb ranging and its applications[J]. Chinese Journal of Lasers, 48, 1504002(2021).

    [24] Xia B. Research on the on-line measurement of multi-degree-of-freedom error of guideway[D](2020).

    [25] Feng Q B, Liang J W. Development of a single mode fiber laser collimator[J]. Laser Technology, 18, 357-360(1994).

    [26] Feng Q B, Zhang B, Kuang C F. A straightness measurement system using a single-mode fiber-coupled laser module[J]. Optics & Laser Technology, 36, 279-283(2004).

    [27] You F L, Feng Q B, Zhang B. Straightness error measurement based on common-path compensation for laser beam drift[J]. Optics and Precision Engineering, 19, 515-519(2011).

    [28] Weichert C, Köchert P, Schötka E et al. Investigation into the limitations of straightness interferometers using a multisensor-based error separation method[J]. Measurement Science and Technology, 29, 064001(2018).

    [29] Kimura A, Wei G, Zeng L J. Position and out-of-straightness measurement of a precision linear air-bearing stage by using a two-degree-of-freedom linear encoder[J]. Measurement Science and Technology, 21, 054005(2010).

    [30] Chen B Y, Mao W D, Lou Y T et al. Simultaneous measurement of the straightness error and its position using a modified Wollaston-prism-sensing homodyne interferometer[J]. Measurement Science and Technology, 31, 085004(2020).

    [31] Lou Y T, Li Z Y, Yan L P et al. A phase differential heterodyne interferometer for simultaneous measurement of straightness error and displacement[J]. Optics Communications, 497, 127195(2021).

    [32] Shi K, Su J H, Hou W M. Roll angle measurement system based on differential plane mirror interferometer[J]. Optics Express, 26, 19826-19834(2018).

    [33] An Z J. Research on high accuracy two-axis autocollimator[D](2020).

    [34] Saito Y, Arai Y, Gao W. Investigation of an optical sensor for small tilt angle detection of a precision linear stage[J]. Measurement Science and Technology, 21, 054006(2010).

    [35] Shimizu Y, Tan S L, Murata D et al. Ultra-sensitive angle sensor based on laser autocollimation for measurement of stage tilt motions[J]. Optics Express, 24, 2788-2805(2016).

    [36] Heikkinen V, Byman V, Palosuo I et al. Interferometric 2D small angle generator for autocollimator calibration[J]. Metrologia, 54, 253-261(2017).

    [37] Li R P, Zhou M, Konyakhin I et al. Cube-corner autocollimator with expanded measurement range[J]. Optics Express, 27, 6389-6403(2019).

    [38] Chen Y L, Shimizu Y, Tamada J et al. Optical frequency domain angle measurement in a femtosecond laser autocollimator[J]. Optics Express, 25, 16725-16738(2017).

    [39] Eom T B, Jeong D Y, Kim J W. The small angle generator based on a laser angle interferometer[J]. International Journal of Precision Engineering and Manufacturing, 8, 20-23(2007).

    [40] Chen L Y, Lee J Y, Chang H S et al. Development of an angular displacement measurement by birefringence heterodyne interferometry[J]. Smart Science, 3, 188-192(2015).

    [41] Hsieh H L, Lee J Y, Chen L Y et al. Development of an angular displacement measurement technique through birefringence heterodyne interferometry[J]. Optics Express, 24, 6802-6813(2016).

    [42] Jiang H, Yin C Y. Sensitivity enhanced roll angle measurement[J]. Optical Engineering, 39, 516-519(2000).

    [43] Liu Z Y, Lin D J, Jiang H et al. Roll angle interferometer by means of wave plates[J]. Sensors and Actuators A: Physical, 104, 127-131(2003).

    [44] Wu C M, Chuang Y T. Roll angular displacement measurement system with microradian accuracy[J]. Sensors and Actuators A: Physical, 116, 145-149(2004).

    [45] Huang J H, Wang Z, Gao J M et al. Modeling and analysis of phase fluctuation in a high-precision roll angle measurement based on a heterodyne interferometer[J]. Sensors, 16, 1214(2016).

    [46] Tang S Z, Wang Z, Li M et al. Note: Optimal choice of the reflector by phase analysis for heterodyne interferometric roll angle measurement[J]. Review of Scientific Instruments, 87, 026101(2016).

    [47] Qi J, Wang Z, Huang J H et al. Note: Enhancing the sensitivity of roll-angle measurement with a novel interferometric configuration based on waveplates and folding mirror[J]. Review of Scientific Instruments, 87, 036106(2016).

    [48] Qi J Y, Wang Z, Huang J H et al. Resolution-enhanced heterodyne laser interferometer with differential configuration for roll angle measurement[J]. Optics Express, 26, 9634-9644(2018).

    [49] Qi J Y, Wang Z, Huang J H et al. Heterodyne interferometer with two parallel-polarized input beams for high-resolution roll angle measurement[J]. Optics Express, 27, 13820-13830(2019).

    [50] Kuang C F, Feng Q B, Zhang B et al. A novel method for measuring roll[J]. Journal of Optoelectronics·Laser, 17, 468-470(2006).

    [51] Plosker E, Bykhovsky D, Arnon S. Evaluation of the estimation accuracy of polarization-based roll angle measurement[J]. Applied Optics, 52, 5158-5164(2013).

    [52] Plosker E, Arnon S. Statistics of remote roll angle measurement[J]. Applied Optics, 53, 2437-2440(2014).

    [53] Shi E X, Guo J J, Shi E X et al. Theoretic study on new method for roll angle measurement of machines[C], 2722-2726(2008).

    [54] Le Y F, Hou W M, Hu K et al. High-sensitivity roll-angle interferometer[J]. Optics Letters, 38, 3600-3603(2013).

    [55] Jin T, Xia G Z, Hou W M et al. High resolution and stability roll angle measurement method for precision linear displacement stages[J]. Review of Scientific Instruments, 88, 023102(2017).

    [56] Jin T, Ji H, Hou W et al. Measurement of straightness without Abbe error using an enhanced differential plane mirror interferometer[J]. Applied Optics, 56, 607-610(2017).

    [57] Jin T, Han M Y, Liu J L et al. A heterodyne interferometer for simultaneous measurement of roll and straightness[J]. IEEE Access, 7, 133257-133264(2019).

    [58] Wu S J, Yang J, Li W X et al. Precision roll angle measurement based on digital speckle pattern interferometry[J]. Measurement Science and Technology, 30, 045005(2019).

    [59] Yu X, Liu Q G, Liu C et al. Talbot-moiré effect-based roll angle measurement and its image processing[J]. Nanotechnology and Precision Engineering, 15, 217-221(2017).

    [60] Yu X. Talbot-Moiré effect method for roll angle measurement[D](2016).

    [61] Tang S Z, Wang Z, Gao J M et al. Measurement method for roll angular displacement with a high resolution by using diffraction gratings and a heterodyne interferometer[J]. Review of Scientific Instruments, 85, 045110(2014).

    [62] Tang S Z, Li M, Liang H et al. High-accuracy small roll angle measurement method based on dual-grating diffraction heterodyne interferometer[C], 1710233(2018).

    [63] Zhou S Y, Le V, Mi Q G et al. Grating-corner-cube-based roll angle sensor[J]. Sensors, 20, 5524(2020).

    [64] Zhai Y S, Zhang Z F, Su Y L et al. A high-precision roll angle measurement method[J]. Optik, 126, 4837-4840(2015).

    [65] Cai Y D, Yang B H, Fan K C. Robust roll angular error measurement system for precision machines[J]. Optics Express, 27, 8027-8036(2019).

    [66] Lee J Y, Chen H Y, Hsu C C et al. Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution[J]. Sensors and Actuators A: Physical, 137, 185-191(2007).

    [67] Hsieh H L, Lee J Y, Wu W T et al. Quasi-common-optical-path heterodyne grating interferometer for displacement measurement[J]. Measurement Science and Technology, 21, 115304(2010).

    [68] Kimura A, Wei G, Arai Y et al. Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness[J]. Precision Engineering, 34, 145-155(2010).

    [69] Li X, Wang H, Ni K et al. Two-probe optical encoder for absolute positioning of precision stages by using an improved scale grating[J]. Optics express, 24, 21378-21391(2016).

    [70] Kim J A, Kim K C, Bae E W et al. Six-degree-of-freedom displacement measurement system using a diffraction grating[J]. Review of Scientific Instruments, 71, 3214-3219(2000).

    [71] Bae E W, Kim J A, Kim S H. Multi-degree-of-freedom displacement measurement system for milli-structures[J]. Measurement Science and Technology, 12, 1495-1502(2001).

    [72] Liu C H, Huang H L, Lee H W. Five-degrees-of-freedom diffractive laser encoder[J]. Applied Optics, 48, 2767-2777(2009).

    [73] Liu C H, Cheng C H. Development of a grating based multi-degree-of-freedom laser linear encoder using diffracted light[J]. Sensors and Actuators A: Physical, 181, 87-93(2012).

    [74] Lee C B, Kim G H, Lee S K. Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultraprecision linear stage[J]. Measurement Science and Technology, 22, 105901(2011).

    [75] Lee C B, Lee S K. Multi-degree-of-freedom motion error measurement in an ultraprecision machine using laser encoder: review[J]. Journal of Mechanical Science and Technology, 27, 141-152(2013).

    [76] Kimura A, Gao W, Kim W J et al. A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement[J]. Precision Engineering, 36, 576-585(2012).

    [77] Gao W, Saito Y, Muto H et al. A three-axis autocollimator for detection of angular error motions of a precision stage[J]. CIRP Annals, 60, 515-518(2011).

    [78] Li X H, Gao W, Muto H et al. A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage[J]. Precision Engineering, 37, 771-781(2013).

    [79] Shimizu Y, Furuta M, Chen Y L et al. Uncertainty analysis of a six-degree-of-freedom surface encoder for a planar motion stage[J]. Procedia CIRP, 75, 355-360(2018).

    [80] Ishizuka R, Matsukuma H, Shimizu Y et al. Crosstalk error analysis of a multi-degree-of-freedom surface encoder for a planar motion stage[C], 36-39(2018).

    [81] Shimizu Y, Matsukuma H, Gao W. Optical sensors for multi-axis angle and displacement measurement using grating reflectors[J]. Sensors, 19, 5289(2019).

    [82] Hsu C C, Chen H, Chiang C W et al. Dual displacement resolution encoder by integrating single holographic grating sensor and heterodyne interferometry[J]. Optics Express, 25, 30189-30202(2017).

    [83] Hsieh H L, Pan S W. Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements[J]. Optics Express, 23, 2451-2465(2015).

    [84] Hsieh H L, Chen J C, Lerondel G et al. Two-dimensional displacement measurement by quasi-common-optical-path heterodyne grating interferometer[J]. Optics Express, 19, 9770-9782(2011).

    [85] Kuang C F, Feng Q B, Liu B. Analyzing characteristic of the cube-corner retroreflector applied to laser straightness measurement[J]. Optical Technique, 31, 282-285(2005).

    [86] Fan K C, Chen M J, Huang W M. A six-degree-of-freedom measurement system for the motion accuracy of linear stages[J]. International Journal of Machine Tools and Manufacture, 38, 155-164(1998).

    [88] Angood S M, Kemp C, Chaney R J et al. Rotation detection kit[P].

    [89] Liang X, Lin J R, Yang L H et al. Simultaneous measurement of absolute distance and angle based on dispersive interferometry[J]. IEEE Photonics Technology Letters, 32, 449-452(2020).

    [90] Liang X, Lin J R, Wu T F et al. Absolute angular measurement with optical frequency comb using a dispersive interferometry[J]. Optics Express, 28, 36095-36108(2020).

    [91] Liu C H, Jywe W Y, Hsu C C et al. Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for linear stage[J]. Review of Scientific Instruments, 76, 055110(2005).

    [92] Ni J, Wu S M. Laser alignment techniques for simultaneous machine tool geometric error detection[J]. Proceedings of SPIE, 0954, 694-701(1989).

    [93] Yu X Z, Gillmer S R, Woody S C et al. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology[J]. Review of Scientific Instruments, 87, 065109(2016).

    [94] Yu X Z, Gillmer S R, Ellis J D. Beam geometry, alignment, and wavefront aberration effects on interferometric differential wavefront sensing[J]. Measurement Science and Technology, 26, 125203(2015).

    [95] Gillmer S R, Smith R G, Woody S C et al. Compact fiber-coupled three degree-of-freedom displacement interferometry for nanopositioning stage calibration[J]. Measurement Science and Technology, 25, 075205(2014).

    [96] Zhou S Y, Le V, Xiong S L et al. Dual-comb spectroscopy resolved three-degree-of-freedom sensing[J]. Photonics Research, 9, 243-251(2021).

    [97] Coddington I, Swann W C, Nenadovic L et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photonics, 3, 351-356(2009).

    [98] Wang G C, Yan S H, Lin C B et al. Overview of large scale precision ranging by femtosecond optical frequency comb[J]. Optical Technique, 38, 670-677(2012).

    [100] Guo J K, Li X B, Li X. Five degrees of freedom simultaneous measurement of linear motion system by combination of optical with inclination sensors[J]. Journal of Xi'an Jiaotong University, 55, 64-72(2021).

    [101] Liu C S, Pu Y F, Chen Y T et al. Design of a measurement system for simultaneously measuring six-degree-of-freedom geometric errors of a long linear stage[J]. Sensors, 18, 3875(2018).

    [102] Liu C S, Lai J J, Luo Y T. Design of a measurement system for six-degree-of-freedom geometric errors of a linear Guide of a machine tool[J]. Sensors, 19, 5(2018).

    [103] Chang Y H, Liu C S, Cheng C C. Design and characterisation of a fast steering mirror compensation system based on double porro prisms by a screw-ray tracing method[J]. Sensors, 18, 4046(2018).

    [104] Guo Y, Cheng H B, Wen Y F et al. Three-degree-of-freedom autocollimator based on a combined target reflector[J]. Applied Optics, 59, 2262-2269(2020).

    [105] Cai Y D, Wang L H, Liu Y et al. Accuracy improvement of linear stages using on-machine geometric error measurement system and error transformation model[J]. Optics Express, 30, 7539-7550(2022).

    [106] Chen B Y, Xu B, Yan L P et al. Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters[J]. Optics Express, 23, 9052-9073(2015).

    [107] Lou Y T, Yan L P, Chen B Y et al. Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology[J]. Optics Express, 25, 6805-6821(2017).

    [108] Wang D D, Yang Y Y, Liu D et al. High-precision technique for in situ testing of the PZT scanner based on fringe analysis[J]. Optics Communications, 283, 3115-3121(2010).

    [109] Ge Z T, Takeda M. High-resolution two-dimensional angle measurement technique based on fringe analysis[J]. Applied Optics, 42, 6859-6868(2003).

    [110] Smith R, Fuss F K. Theoretical analysis of interferometer wave front tilt and fringe radiant flux on a rectangular photodetector[J]. Sensors, 13, 11861-11898(2013).

    [111] Chen B Y, Zhang E Z, Yan L P et al. A laser interferometer for measuring straightness and its position based on heterodyne interferometry[J]. Review of Scientific Instruments, 80, 115113(2009).

    [112] Yang L G, Wang X Z, Long L L. Measurement method of multi-degree-freedom based on laser collimation principle[J]. Proceedings of SPIE, 7656, 765669(2010).

    [113] Fan K C, Chen M J. A 6-degree-of-freedom measurement system for the accuracy of X-Y stages[J]. Precision Engineering, 24, 15-23(2000).

    [114] Lee S W, Mayor R, Ni J. Development of a six-degree-of-freedom geometric error measurement system for a meso-scale machine tool[J]. Journal of Manufacturing Science and Engineering, 127, 857-865(2005).

    [115] Wang W, Kweon S H, Hwang C S et al. Development of an optical measuring system for integrated geometric errors of a three-axis miniaturized machine tool[J]. The International Journal of Advanced Manufacturing Technology, 43, 701-709(2009).

    [116] Chen Y T, Lin W C, Liu C S. Design and experimental verification of novel six-degree-of freedom geometric error measurement system for linear stage[J]. Optics and Lasers in Engineering, 92, 94-104(2017).

    [117] Chen C J, Lin P D, Jywe W Y. An optoelectronic measurement system for measuring 6-degree-of-freedom motion error of rotary parts[J]. Optics Express, 15, 14601-14617(2007).

    [118] Jywe W, Chen C J, Hsieh W H et al. A novel simple and low cost 4 degree of freedom angular indexing calibrating technique for a precision rotary table[J]. International Journal of Machine Tools and Manufacture, 47, 1978-1987(2007).

    [119] Schwenke H, Schmitt R, Jatzkowski P et al. On-the-fly calibration of linear and rotary axes of machine tools and CMMs using a tracking interferometer[J]. CIRP Annals, 58, 477-480(2009).

    [120] Park S R, Hoang T K, Yang S H. A new optical measurement system for determining the geometrical errors of rotary axis of a 5-axis miniaturized machine tool[J]. Journal of Mechanical Science and Technology, 24, 175-179(2010).

    [121] He Z Y, Fu J Z, Zhang L C et al. A new error measurement method to identify all six error parameters of a rotational axis of a machine tool[J]. International Journal of Machine Tools and Manufacture, 88, 1-8(2015).

    [122] Feng Q B, Zhang B, Cui C X et al. Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide[J]. Optics Express, 21, 25805-25819(2013).

    [123] Gao S, Zhang B, Feng Q B et al. Errors crosstalk analysis and compensation in the simultaneous measuring system for five-degree-of-freedom geometric error[J]. Applied Optics, 54, 458-466(2015).

    [124] Cui C X, Feng Q B, Zhang B et al. System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser[J]. Optics Express, 24, 6735-6748(2016).

    [125] Zhao Y Q, Zhang B, Feng Q B. Measurement system and model for simultaneously measuring 6DOF geometric errors[J]. Optics Express, 25, 20993-21007(2017).

    [126] Jia P Z, Zhang B, Feng Q B et al. Simultaneous measurement of 6DOF motion errors of linear guides of CNC machine tools using different modes[J]. Sensors, 20, 3439(2020).

    [127] Jia P Z, Zhang B, Zheng F J et al. Comprehensive measurement model of geometric errors for three linear axes of computer numerical control machine tools[J]. Measurement Science and Technology, 33, 015202(2022).

    [128] Zheng F J, Feng Q B, Zhang B et al. A high-precision laser method for directly and quickly measuring 21 geometric motion errors of three linear axes of computer numerical control machine tools[J]. The International Journal of Advanced Manufacturing Technology, 109, 1285-1296(2020).

    [129] Bao C C, Feng Q B, Li J K. Simultaneous measurement method and error analysis of the six degrees-of-freedom motion errors of a rotary axis[J]. Applied Sciences, 8, 2232(2018).

    [130] Li J K, Feng Q B, Bao C C et al. Method for simultaneous measurement of five DOF motion errors of a rotary axis using a single-mode fiber-coupled laser[J]. Optics Express, 26, 2535-2545(2018).

    [131] Zheng F J, Feng Q B, Zhang B et al. A method for simultaneously measuring 6DOF geometric motion errors of linear and rotary axes using lasers[J]. Sensors, 19, 1764(2019).

    Fei Long, Fajia Zheng, Peizhi Jia, Bin Zhang, Jiakun Li, Qibo Feng. Research Status and Development Trend of Laser Multi-Degree-of-Freedom Simultaneous Measurement[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312012
    Download Citation