• Laser & Optoelectronics Progress
  • Vol. 55, Issue 11, 110001 (2018)
Jingzhou Zhang1、2、**, Feng Chen1、2、*, Jiale Yong1、2, Qing Yang1、3, and Xun Hou1、2
Author Affiliations
  • 1 State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
  • 2 Key Laboratory of Photonics Technology for Information of Shaanxi Province, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
  • 3 School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
  • show less
    DOI: 10.3788/LOP55.110001 Cite this Article Set citation alerts
    Jingzhou Zhang, Feng Chen, Jiale Yong, Qing Yang, Xun Hou. Research Progress on Bioinspired Superhydrophobic Surface Induced by Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2018, 55(11): 110001 Copy Citation Text show less
    References

    [1] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 202, 1-8(1997). http://link.springer.com/article/10.1007/s004250050096

    [2] Zorba V, Stratakis E, Barberoglou M. et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J]. Advanced Materials, 20, 4049-4054(2008). http://onlinelibrary.wiley.com/doi/10.1002/adma.200800651/pdf

    [3] Feng L, Zhang Y, Xi J. et al. Petal effect: A superhydrophobic state with high adhesive force[J]. Langmuir, 24, 4114-4119(2008). http://europepmc.org/abstract/MED/18312016

    [4] Gao X, Jiang L. Water-repellent legs of water striders[J]. Nature, 432, 36(2004).

    [5] Shi F, Niu J, Liu J. et al. Towards understanding why a superhydrophobic coating is needed by water striders[J]. Advanced Materials, 19, 2257-2261(2010). http://onlinelibrary.wiley.com/doi/10.1002/adma.200700752/pdf

    [6] Gao X, Yan X, Yao X. et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J]. Advanced Materials, 19, 2213-2217(2010). http://onlinelibrary.wiley.com/doi/10.1002/adma.200601946/pdf

    [7] Feng L, Li S, Li Y. et al. Super-hydrophobic surfaces: From natural to artificial[J]. Advanced Materials, 14, 1857-1860(2002). http://onlinelibrary.wiley.com/doi/10.1002/adma.200290020/epdf

    [8] Zheng Y, Gao X, Jiang L. et al. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter, 3, 178-182(2007). http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1039/b612667g

    [9] Barthlott W, Schimmel T, Wiersch S. et al. The salvinia paradox: Superhydrophobic surfaces with hydrophilic pins for air retention under water[J]. Advanced Materials, 22, 2325-2328(2010).

    [10] Wong T, Kang S, Tang S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 477, 443-447(2011). http://www.nature.com/nature/journal/v477/n7365/abs/nature10447.html

    [11] Shirtcliffe N, Mchale Glen, Newton M. et al. Plastron properties of a superhydrophobic surface[J]. Applied Physics Letters, 89, 104106(2006). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4821929

    [12] Genzer J, Efimenko K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review[J]. Biofouling, 22, 339-360(2006). http://europepmc.org/abstract/med/17110357

    [13] Sun T, Qng G. Biomimetic smart interface materials for biological applications[J]. Advanced Healthcare Materials, 23, 57-77(2011). http://www.ncbi.nlm.nih.gov/pubmed/21433103

    [14] Nakajima A, Hashimoto K, Watanabe T. Recent studies on super-hydrophobic films[J]. Monatshefte für Chemie, 132, 31-41(2001). http://link.springer.com/article/10.1007/s007060170142

    [15] Verplanck N, Coffinier Y, Thomy V. et al. Wettability switching techniques on superhydrophobic surfaces[J]. Nanoscale Research Letters, 2, 577-596(2007). http://europepmc.org/articles/PMC3246619/

    [16] Liu M, Chen Y, Zhang C. et al. Stable superhydrophobic fluorine containing polyfluorenes[J]. Chinese Journal of Polymer Science, 30, 308-315(2012). http://link.springer.com/article/10.1007/s10118-012-1127-1

    [17] Leroy F, Müller-Plathe F. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale[J]. Langmuir, 27, 637-645(2011). http://pubs.acs.org/doi/abs/10.1021/la104018k

    [18] Kim D, Kim Y, Hwang S. et al. Experimental and theoretical evaluation of wettability on micro/nano hierarchically engineered surfaces based on robust micro-post-arrayed-and highly ordered nano-rippled-structures[J]. Applied Surface Science, 257, 8985-8992(2011). http://www.sciencedirect.com/science/article/pii/S0169433211007793

    [19] Banerjee I, Pangule R, Kane R. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms[J]. Advanced Materials, 23, 690-718(2011). http://www.ncbi.nlm.nih.gov/pubmed/20886559

    [20] Zhang X, Shi F, Niu J. et al. Superhydrophobic surfaces: From structural control to functional application[J]. Journal of Materials Chemistry, 18, 621-633(2008). http://pubs.rsc.org/en/content/articlehtml/2008/jm/b711226b

    [21] Feng L, Wu L, Wang J. et al. Detection of a prognostic indicator in early-stage cancer using functionalized graphene-based peptide sensors[J]. Advanced Materials, 24, 125-131(2012). http://onlinelibrary.wiley.com/doi/10.1002/adma.201103205/full

    [22] Hong X, Gao X, Jiang L. Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet[J]. Journal of the American Chemical Society, 129, 1478-1479(2007). http://pubs.acs.org/cgi-bin/abstract.cgi/jacsat/2007/129/i06/abs/ja065537c.html

    [23] Han Y, Levkin P, Abarientos I. Monolithic superhydrophobic polymer layer with photopatterned virtual channel for the separation of peptides using two-dimensional thin layer chromatography-desorption electrospray ionization mass spectrometry[J]. Analytical Chemistry, 82, 2520-2528(2010). http://pubs.acs.org/doi/abs/10.1021/ac100010h

    [24] Malvadkar N, Hancock M, Sekeroglu K. et al. An engineered anisotropic nanofilm with unidirectional wetting properties[J]. Nature Materials, 9, 1023-1028(2010). http://www.ncbi.nlm.nih.gov/pubmed/20935657/

    [25] Tekin H, Tsinman T, Sanchez J. et al. Responsive micromolds for sequential patterning of hydrogel microstructures[J]. Journal of the American Chemical Society, 133, 12944-12947(2011). http://pubs.acs.org/doi/abs/10.1021/ja204266a

    [26] Bormasheko E, Musin A, Grynyov R. et al. Floating of heavy objects on liquid surfaces coated with colloidal particles[J]. Colloid and Polymer Science, 293, 567-572(2015). http://link.springer.com/article/10.1007/s00396-014-3456-9

    [27] Wang S, Song Y, Jiang L. Microscale and nanoscale hierarchical structured mesh films with superhydrophobic and superoleophilic properties induced by long-chain fatty acids[J]. Nanotechnology, 18, 015103(2007). http://adsabs.harvard.edu/abs/2007Nanot..18a5103W

    [28] Shirtcliffe N, Aqil S, Evans C. et al. The use of high aspect ratio photoresist (SU-8) for super-hydrophobic pattern prototyping[J]. Journal of Micromechanics and Microengineering, 14, 1384-1389(2004). http://www.ingentaconnect.com/content/iop/jmm/2004/00000014/00000010/art00013

    [29] Lee S, Kwon T. Effects of intrinsic hydrophobicity on wettability of polymer replicas of a superhydrophobic lotus leaf[J]. Journal of Micromechanics and Microengineering, 17, 687-692(2007). http://adsabs.harvard.edu/abs/2007JMiMi..17..687L

    [30] Luo Z, Zhang Z, Hu L. et al. Stable bionic superhydrophobic coating surface fabricated by a conventional curing process[J]. Advanced Materials, 20, 970-974(2008). http://onlinelibrary.wiley.com/doi/10.1002/adma.200701229/full

    [31] Feng L, Li S, Li H. et al. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers[J]. Angewandte Chemie International Edition, 41, 1221-1223(2002).

    [32] Larmour I, Bell S, Saunders G. Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition[J]. Angewandte Chemie, 119, 1740-1742(2007).

    [33] Wang Z, Lopez C, Hirsa A. et al. Impact dynamics and rebound of water droplets on superhydrophobic carbon nanotube arrays[J]. Applied Physics Letters, 91, 023105(2007). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4829772

    [34] Lim H, Baek J, Park K. et al. Multifunctional hybrid fabrics with thermally stable superhydrophobicity[J]. Advanced Materials, 22, 2138-2141(2010). http://europepmc.org/abstract/MED/20349429

    [35] Jin R, Yuan J. Biomimetically controlled formation of nanotextured silica/titania films on arbitrary substrates and their tunable surface function[J]. Advanced Materials, 21, 3750-3753(2009). http://onlinelibrary.wiley.com/doi/10.1002/adma.200803393/full

    [36] Zhang J, Li Y, Zhang X. et al. Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays[J]. Advanced Materials, 22, 4249-4269(2010). http://onlinelibrary.wiley.com/doi/10.1002/adma.201000755/full

    [37] Zahner D, Abagat J, Svec F. et al. A facile approach to superhydrophilic-superhydrophobic patterns in porous polymer films[J]. Advanced Materials, 23, 3030-3034(2011). http://europepmc.org/abstract/MED/21598317

    [38] Xia F, Jiang L. Bio-inspired, smart, multiscale interfacial materials[J]. Advanced Materials, 20, 1-2(2010). http://d.wanfangdata.com.cn/Conference_8390963.aspx

    [39] Cao L, Hu H, Gao D. Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials[J]. Langmuir, 23, 4310-4314(2007). http://meetings.aps.org/Meeting/MAR08/Event/80161

    [40] Narhe R, Beysens D. Nucleation and growth on a superhydrophobic grooved surface[J]. Physical Review Letters, 93, 076103(2004). http://europepmc.org/abstract/MED/15324253

    [41] Wu Y, Wei Q, Cai M. et al. Interfacial friction control[J]. Advanced Materials Interfaces, 2, 1400392(2014).

    [42] Zhang X, Liu H, Huang X. et al. One-step femtosecond laser patterning of light-trapping structure on dye-sensitized solar cell photoelectrodes[J]. Journal of Materials Chemistry C, 3, 3336-3341(2015). http://www.ncbi.nlm.nih.gov/pubmed/26113977

    [43] Bonse J, Baudach S, Krüger J. et al. Femtosecond laser ablation of silicon-modification thresholds and morphology[J]. Applied Physics A, 74, 19-25(2002). http://link.springer.com/article/10.1007/s003390100893

    [44] Hwang D, Choi T, Grigoropoulos C. Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass[J]. Applied Physics A, 79, 605-612(2004). http://link.springer.com/article/10.1007/s00339-004-2547-8

    [45] Venkatakrishnan K, Tan B, Ngoi B. Femtosecond pulsed laser ablation of thin gold film[J]. Optics& Laser Technology, 34, 199-202(2002). http://www.sciencedirect.com/science/article/pii/S0030399201001104

    [46] Bärsch N, Körber K, Ostendorf A. et al. Ablation and cutting of planar silicon devices using femtosecond laser pulses[J]. Applied Physics A, 77, 237-242(2003). http://link.springer.com/article/10.1007/s00339-003-2118-4

    [47] Wang W, Liu Y, Liu Y. et al. Direct laser writing of superhydrophobic PDMS elastomers for controllable manipulation via Marangoni effect[J]. Advanced Functional Materials, 27, 1702946(2017). http://onlinelibrary.wiley.com/doi/10.1002/adfm.201702946/full

    [48] Winter J, Rapp S, Schmidt M. et al. Ultrafast laser processing of copper: A comparative study of experimental and simulated transient optical properties[J]. Applied Surface Science, 417, 2-15(2017). http://www.sciencedirect.com/science/article/pii/S016943321730421X

    [49] Baldacchini T, Carey J, Zhou M. et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser[J]. Langmuir, 22, 4917-4919(2006). http://europepmc.org/abstract/MED/16700574

    [50] Zhang J, Chen F, Yang Q. et al. A widely applicable method to fabricate underwater superoleophobic surfaces with low oil-adhesion on different metals by a femtosecond laser[J]. Applied Physics A, 123, 594(2017). http://link.springer.com/10.1007/s00339-017-1195-8

    [51] Yong J, Chen F, Yang Q. et al. Superoleophobic surfaces[J]. Chemical Society Review, 46, 4168-4217(2017).

    [52] Huo J, Yang Q, Chen F. et al. Underwater transparent miniature “mechanical hand” based on femtosecond laser-induced controllable oil-adhesive patterned glass for oil droplet manipulation[J]. Langmuir, 33, 3659-3665(2017).

    [53] Liu M, Wang S, Jiang L. Nature-inspired superwettability system[J]. Nature, 2, 17036(2017). http://go.nature.com/2tfGbLG

    [54] Yong J, Chen F, Yang Q. et al. Nepenthes inspired design of self-repairing omniphobic slippery liquid infused porous surface (SLIPS) by femtosecond laser direct writing[J]. Advanced Materials Interfaces, 4, 170052(2017). http://onlinelibrary.wiley.com/doi/10.1002/admi.201700552/full

    [55] Yong J, Yang Q, Chen F. et al. Reversible underwater lossless oil droplet transportation[J]. Advanced Materials Interfaces, 2, 1400388(2015). http://onlinelibrary.wiley.com/doi/10.1002/admi.201400388/full

    [56] Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry, 28, 988-994(1936). http://jxb.oxfordjournals.org/external-ref?access_num=10.1021/ie50320a024&link_type=DOI

    [57] Cassie A, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 40, 231-263(1944).

    [58] Feng L, Li S, Li H. et al. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers[J]. Angewandte Chemie, 41, 1221-1223(2002).

    [59] Marmur A, Bittoun E. When Wenzel and Cassie are right: Reconciling local and global considerations[J]. Langmuir, 25, 1277-1281(2009). http://doi.med.wanfangdata.com.cn/10.1021/la802667b

    [60] Skoulas E, Manousaki A, Fotakis C. et al. Biomimetic surface structuring using cylindrical vector femtosecond laser beams[J]. Scientific Report, 7, 45114(2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5361190/

    [61] Sugioka K, Cheng Y. Ultrafast lasers-reliable tools for advanced materials processing[J]. Light: Science & Applications, 3, e149(2014). http://www.nature.com/articles/lsa201430/figures/

    [62] Yong J, Chen F, Yang Q. et al. Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser[J]. ACS Applied Materials Interfaces, 5, 9382-9385(2013). http://pubs.acs.org/doi/abs/10.1021/am402923t

    [63] Yong J, Chen F, Yang Q. et al. Femtosecond laser controlled wettability of solid surfaces[J]. Soft Matter, 11, 8897(2015). http://europepmc.org/abstract/MED/26415826

    [64] Vorobyev A, Guo C. Femtosecond laser modification of material wetting properties: A brief review[J]. Science of Advanced Materials, 4, 432-438(2012). http://www.ingentaconnect.com/content/asp/sam/2012/00000004/F0020003/art00006

    [65] Zhou W P, Wang S T, Yu Y C et al. Research progress in fabrication of embedded microball lenses, energy devices and biosensors by femtosecond laser direct writing[J]. Chinese Journal of Lasers, 44, 0102002(2017).

    [66] Pan H H, Wang Z, Fan W Z et al. Superhydrophobic titanium surface micro/nanostructures induced by femtosecond laser[J]. Chinese Journal of Lasers, 43, 0802002(2016).

    [67] Pendurthi A, Movafaghi S, Wang W. et al. Fabrication of nanostructured omniphobic and superomniphobic surfaces with inexpensive CO2 laser engraver[J]. ACS Applied Materials Interfaces, 9, 25656-25661(2017). http://www.ncbi.nlm.nih.gov/pubmed/28731320

    [68] Li H, Fan W, Pan H. et al. Fabrication of "petal effect" surfaces by femtosecond laser-induced forward transfer[J]. Chemical Physics Letters, 667, 20-24(2017). http://www.sciencedirect.com/science/article/pii/S0009261416309150

    [69] Wu B, Zhou M, Li J. et al. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser[J]. Applied Surface Science, 256, 61-66(2009). http://www.sciencedirect.com/science/article/pii/S0169433209010605

    [70] Wang B, Wang X, Zheng H. et al. Surface wettability modification of cyclic olefin polymer by direct femtosecond laser irradiation[J]. Nanomaterials, 5, 1442-1453(2015). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5304633/

    [71] Vorobyev A Y, Guo C. Multifunctional surfaces produced by femtosecond laser pulses[J]. Journal of Applied Physics, 117, 033103(2015). http://scitation.aip.org/content/aip/journal/jap/117/3/10.1063/1.4905616

    [72] Yong J, Yang Q, Chen F. et al. Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser[J]. Applied Physics A, 111, 243-249(2013). http://link.springer.com/article/10.1007/s00339-013-7572-z

    [73] Ahsan M, Dewanda F, Lee M. et al. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses[J]. Applied Surface Science, 265, 784-789(2013). http://www.sciencedirect.com/science/article/pii/S0169433212020867

    [74] Kam D H, Bhattacharya S, Mazumder J. Control of the wetting properties of an AISI 316L stainless steel surface by femtosecond laser-induced surface modification[J]. Journal of Micromechanics and Microengineering, 22, 105019(2012). http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012JMiMi..22j5019K&db_key=PHY&link_type=ABSTRACT&high=02544

    [75] Tang M, Hong M, Choo Y. et al. Super-hydrophobic transparent surface by femtosecond laser micro-patterned catalyst thin film for carbon nanotube cluster growth[J]. Applied Physics A, 101, 503-508(2010). http://link.springer.com/article/10.1007/s00339-010-5887-6

    [76] Zorba V, Stratakis E, Barberoglou M. et al. Tailoring the wetting response of silicon surfaces via fs laser structuring[J]. Applied Physics A, 93, 819-825(2008). http://link.springer.com/article/10.1007/s00339-008-4757-y

    [77] Zhou M, Yang H, Li B. et al. Forming mechanisms and wettability of double-scale structures fabricated by femtosecond laser[J]. Applied Physics A, 94, 571-576(2009). http://link.springer.com/article/10.1007/s00339-008-4920-5

    [78] Barberoglou M, Zorba V, Stratakis E. et al. Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon[J]. Applied Surface Science, 255, 5425-5429(2009). http://www.sciencedirect.com/science/article/pii/S016943320801725X

    [79] Farshchian B, Gatabi J, Bernick S. et al. Laser-induced superhydrophobic grid patterns on PDMS for droplet arrays formation[J]. Applied Surface Science, 396, 359-365(2017). http://www.sciencedirect.com/science/article/pii/S0169433216322772

    [80] He H, Qu N, Zeng Y. et al. Lotus-leaf-like microstructures on tungsten surface induced by one-step nanosecond laser irradiation[J]. Surface & Coating Technology, 307, 898-907(2016). http://www.sciencedirect.com/science/article/pii/S0257897216310271

    [81] Ahmmed K M, Patience C, Kietzig A. Internal and external flow over laser-textured superhydrophobic polytetrafluoroethylene (PTFE)[J]. ACS Applied Materials Interfaces, 8, 27411-27419(2016).

    [82] Hisler V, Jendoubi H, Hairaye C. et al. Tensiometric characterization of superhydrophobic surfaces as compared to the sessile and bouncing drop methods[J]. Langmuir, 32, 7765-7773(2016). http://www.ncbi.nlm.nih.gov/pubmed/27408983

    [83] Toosi S F, Moradi S, Kamal S. et al. Superhydrophobic laser ablated PTFE substrates[J]. Applied Surface Science, 349, 715-723(2015). http://www.sciencedirect.com/science/article/pii/S0169433215011241

    [84] Liang F, Lehr J, Danielczak L. et al. Robust non-wetting PTFE surfaces by femtosecond laser machining[J]. International Journal of Molecular Sciences, 15, 13681-13696(2014). http://europepmc.org/abstract/med/25110862

    [85] Cardoso M. Tribuzi V, balogh D, et al. Laser microstructuring for fabricating superhydrophobic polymeric surfaces[J]. Applied Surface Science, 257, 3281-3284(2011).

    [86] Yoon T, shin H, Teoung S et al. Formation of superhydrophobic poly (dimethysiloxane) by ultrafast laser-induced surface modification[J]. Optics Express, 16, 12715-12725(2008). http://europepmc.org/abstract/med/18711510

    [87] Yong J, Chen F, Yang Q. et al. Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion[J]. Journal of Physics Chemistry C, 117, 24907-24912(2013). http://pubs.acs.org/doi/abs/10.1021/jp408863u

    [88] Moradi S, Hatzlklrlakos S, Kamal S. et al. Superhydrophobic laser-ablated stainless steel substrates exhibiting Cassie-Baxter stable state[J]. Surface Innovation, 3, 151-163(2015).

    [89] Yong J, Chen F, Yang Q. et al. Photoinduced switchable underwater superoleophobicity-superoleophilicity on laser modified titanium surfaces[J]. Journal of Materials Chemistry A, 3, 10703-10709(2015).

    [90] Li B, Zhou M, Yuan R. et al. Fabrication of titanium-based microstructured surfaces and study on their superhydrophobic stability[J]. Journal of Materials Research, 23, 2491-2499(2008). http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=7977749

    [91] Long J, Pan L, Fan P. et al. Cassie-state stability of metallic superhydrophobic surfaces with various micro nanostructures produced by a femtosecond laser[J]. Langmuir, 32, 1066-1072(2016). http://www.ncbi.nlm.nih.gov/pubmed/26745154

    [92] Marie A, Hatzikiriakos S, Englezos P. Patterned superhydrophobic metallic surfaces[J]. Langmuir, 25, 4821-4827(2009).

    [93] Kietzig A, Mirvakili M, Kamal S. et al. Laser-patterned super-hydrophobic pure metallic substrates: Cassie to Wenzel wetting transitions[J]. Journal of Adhesion Science and Technology, 25, 2789-2809(2011). http://www.tandfonline.com/doi/abs/10.1163/016942410X549988

    [94] Li B, Li H, Huang L. et al. Femtosecond pulsed laser textured titanium surfaces with stable superhydrophilicity and superhydrophobicity[J]. Applied Surface Science, 389, 585-593(2016). http://www.sciencedirect.com/science/article/pii/S0169433216315732

    [95] Ta V, Dunn A, Wasley T. et al. Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition[J]. Applied Surface Science, 365, 153-159(2016). http://www.sciencedirect.com/science/article/pii/S0169433216000337

    [96] Frankiewicz C, Attinger D. Texture and wettability of metallic lotus leaves[J]. Nanoscale, 8, 3982-3990(2016). http://europepmc.org/abstract/MED/26537609

    [97] Yong J, Chen F, Yang Q. et al. Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability[J]. Chemical Communication, 51, 9813-9816(2015). http://europepmc.org/abstract/MED/25987485

    [98] Chen F, Zhang D, Yang Q. et al. Bioinspired wetting surface via laser microfabrication[J]. ACS Applied Materials Interfaces, 5, 6777-6792(2013). http://europepmc.org/abstract/med/23865499

    [99] Vorobyev A, Guo C. Direct femtosecond laser surface nano/microstructuring and its applications[J]. Laser & Photonics Review, 7, 385-407(2013). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201200017/full

    [100] Nayak B, Caffrey P, Speck C et al. Superhydrophobic surfaces by replication of micro/nano-structures fabricated by ultrafast-laser-microtexturing[J]. Applied Surface Science, 266, 27-32(2013). http://www.sciencedirect.com/science/article/pii/S0169433212020107

    [101] Li B, Zhou M, Zhang W. et al. Comparison of structures and hydrophobicity of femtosecond and nanosecond laser-etched surfaces on silicon[J]. Applied Surface Science, 263, 45-49(2012). http://www.sciencedirect.com/science/article/pii/S0169433212014705

    [102] Yong J, Chen F, Yang Q. et al. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays[J]. Langmuir, 29, 3274-3279(2013). http://pubs.acs.org/doi/abs/10.1021/la304492c

    [103] Yong J, Chen F, Yang Q. et al. Femtosecond laser controlling underwater oil-adhesion of glass surface[J]. Applied Physics A, 119, 837-844(2015). http://link.springer.com/article/10.1007/s00339-015-9044-0

    [104] Long J, Fan P, Gong D. et al. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: From lotus leaf to rose petal[J]. ACS Applied Materials Interfaces, 7, 9858-9865(2015). http://pubs.acs.org/doi/pdf/10.1021/acsami.5b01870

    [105] Li J, Jing Z, Yang Y. et al. From Cassie state to Gecko state: A facile hydrothermal process for the fabrication of superhydrophobic surfaces with controlled sliding angles on zinc substrates[J]. Surface & Coatings Technology, 258, 973-978(2014). http://www.sciencedirect.com/science/article/pii/S025789721400646X

    [106] Geogre J, Vanessa R, Mathur D. et al. Self-cleaning superhydrophobic surfaces with underwater superaerophobicity[J]. Materials and Design, 100, 8-18(2016). http://www.sciencedirect.com/science/article/pii/S0264127516303872

    [107] Yong J, Yang Q, Chen F. et al. Bioinspired superhydrophobic surfaces with directional adhesion[J]. RSC Advances, 4, 8138-8143(2014). http://www.ingentaconnect.com/content/rsoc/20462069/2014/00000004/00000016/art00034

    [108] Yong J, Yang Q, Chen F. et al. Superhydrophobic PDMS surfaces with three-dimensional(3D) pattern-dependent controllable adhesion[J]. Applied Surface Science, 288, 579-583(2014). http://www.sciencedirect.com/science/article/pii/S0169433213019351

    [109] Zhang D, Chen F, Yang Q. et al. A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser[J]. ACS Applied Materials Interfaces, 4, 4906-4912(2012). http://pubs.acs.org/doi/abs/10.1021/am3012388

    [110] Chen F, Zhang D, Yang Q. et al. Anisotropic wetting on microstrips surface fabricated by femtosecond laser[J]. Langmuir, 27, 359-365(2011). http://europepmc.org/abstract/MED/21141976

    [111] Zhang D, Chen F, Yang Q. et al. Mutual wetting transition between isotropic and anisotropic on directional structures fabricated by femtosecond laser[J]. Soft Matter, 7, 8337-8342(2011). http://adsabs.harvard.edu/abs/2011smat....7.8337z

    [112] Zhang D, Chen F, Fang G. et al. Wetting characteristics on hierarchical structures patterned by a femtosecond laser[J]. Journal of Micromechanics and Microengineering, 20, 075029(2010). http://www.ingentaconnect.com/content/iop/jmm/2010/00000020/00000007/art075029

    [113] Yong J, Yang Q, Chen F. et al. A simple way to achieve superhydrophobicity controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces[J]. Journal of Materials Chemistry A, 2, 5499-5507(2014). http://pubs.rsc.org/en/Content/ArticlePDF/2014/TA/c3ta14711h

    [114] Long J, Fan P, Jiang D. et al. Anisotropic sliding of water droplets on the superhydrophobic surfaces with anisotropic groove-like micro/nano structures[J]. Advanced Materials Interfaces, 24, 1600641(2016). http://onlinelibrary.wiley.com/doi/10.1002/admi.201600641/pdf

    [115] Liu Y, Li S, Niu S. et al. Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate[J]. Applied Surface Science, 379, 230-237(2016). http://www.sciencedirect.com/science/article/pii/S016943321630736X

    [116] Jiang H, Zhang Y, Liu Y. et al. Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil[J]. Laser & Photonics Review, 10, 441-450(2016). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201500256/pdf

    [117] Huang H, Yang L, Bai S. et al. Blackening of metals using femtosecond fiber laser[J]. Applied Optics, 54, 324-333(2015). http://www.opticsinfobase.org/ao/upcoming_pdf.cfm?id=224015

    [118] Davaasuren G, Ngo C, Oh H. et al. Geometric study of transparent superhydrophobic surfaces of molded and grid patterned polydimethylsiloxane (PDMS)[J]. Applied Surface Science, 314, 530-536(2014). http://www.sciencedirect.com/science/article/pii/S0169433214014883

    [119] Stroj S, Kasemann S, Domke M. et al. Transparent superhydrophobic surfaces with high adhesion generated by the combination of femtosecond laser structuring and wet oxidation[J]. Applied Surface Science, 420, 550-557(2017). http://www.sciencedirect.com/science/article/pii/S0169433217313594

    [120] Gong D, Long J, Jiang D. et al. Robust and stable transparent superhydrophobic polydimethylsiloxane films by duplicating via a femtosecond laser ablated template[J]. ACS Applied Materials Interfaces, 8, 17511-17518(2016). http://pubs.acs.org/doi/abs/10.1021/acsami.6b03424

    [121] Fang Y, Yong J, Chen F. et al. Durability of the tunable adhesive superhydrophobic PTFE surfaces for harsh environment applications[J]. Applied Physics A, 122, 827(2016). http://link.springer.com/article/10.1007/s00339-016-0325-z

    [122] Jiang D, Fan P, Gong D. et al. High-temperature imprinting and superhydrophobicity of micro/nano surface structures on metals using molds fabricated by ultrafast laser ablation[J]. Journal of Materials Processing Technology, 236, 56-63(2016). http://www.sciencedirect.com/science/article/pii/S0924013616301418

    [123] Boinovich L, Domantovskiy A G, Emelyanenko A M. et al. Femtosecond laser treatment for the design of electro-insulating superhydrophobic coatings with enhanced wear resistance on glass[J]. ACS Applied Materials Interfaces, 6, 2080-2085(2014). http://www.ncbi.nlm.nih.gov/pubmed/24456120

    [124] Pazokian H, Selimis A, Barzin J. et al. Tailoring the wetting properties of polymers from highly hydrophilic to superhydrophobic using UV laser pulses[J]. Journal of Micromechanics and Microengineering, 22, 035001(2012). http://www.ingentaconnect.com/content/iop/jmm/2012/00000022/00000003/art035001

    [125] Papadopoulou E, Barberoglou M, Zorba V. et al. Reversible photoinduced wettability transition of hierarchical ZnO structures[J]. Journal of Physics Chemistry C, 113, 2891-2895(2009).

    [126] Wang D, Liu Y, Liu X. et al. Towards a tunable and switchable water adhesion on a TiO2 nanotube film with patterned wettability[J]. Chemical Communications, 45, 7018(2009). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000020000021000046000001&idtype=cvips&gifs=Yes

    [127] Kruse C, Anderson T, Wilson C. et al. Extraordinary shifts of the Leidenfrost temperature from multiscale micro/nanostructured surfaces[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 29, 9798-9806(2013). http://pubs.acs.org/doi/abs/10.1021/la401936w

    [128] Kietzig A, Mirvakili M, Kamal S. et al. Nanopatterned metallic surfaces: Their wettability and impact on ice friction[J]. Journal of Adhesion Science and Technology, 25, 1293-1303(2011). http://www.tandfonline.com/doi/abs/10.1163/016942411X555872

    [129] Yong J, Yang Q, Chen F. et al. A bioinspired planar superhydrophobic microboat[J]. Journal of Micromechanics and Microengineering, 24, 035006(2014). http://adsabs.harvard.edu/abs/2014JMiMi..24c5006Y

    [130] Alshehri A, Hadjiantoniou S, Hickey R. et al. Selective cell adhesion on femtosecond laser-microstructured polydimethylsiloxane[J]. Biomedical Materials, 11, 015014(2016). http://www.ncbi.nlm.nih.gov/pubmed/26894472

    [131] Razi S, Mollabashi M, Madanipour K. Laser processing of metallic biomaterials: An approach for surface patterning and wettability control[J]. European Physical Journal Plus, 130, 1-12(2015). http://link.springer.com/article/10.1140/epjp/i2015-15247-5

    [132] Li H, Lai Y, Huang J. et al. Multifunctional wettability patterns prepared by laser processing on superhydrophobic TiO2 nanostructured surfaces[J]. Journal of Materials Chemistry B, 3, 342-347(2014).

    [133] Fadeeva E, Truong V, Stiesch M. et al. Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation[J]. Langmuir, 27, 3012-3019(2011). http://pubs.acs.org/doi/abs/10.1021/la104607g

    [134] Stratakis E, Ranella A, Fotakis C. Biomimetic micro/nanostructured functional surfaces for microfluidic and tissue engineering applications[J]. Biomicrofluidics, 5, 013411(2011). http://europepmc.org/articles/PMC3082348

    [135] Fadeeva E, Schlie S, Koch J. et al. Selective cell control by surface structuring for orthopedic applications[J]. Journal of Adhesion Science and Technology, 24, 2257-2270(2010). http://www.tandfonline.com/doi/abs/10.1163/016942410X508000

    [136] Ranella A, Barberoglou M, Bakogianni S. et al. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures[J]. Acta Biomaterialia, 6, 2711-2720(2010). http://europepmc.org/abstract/med/20080216

    [137] Truong V, Webb H, Fadeeva E. et al. Air-directed attachment of coccoid bacteria to the surface of superhydrophobic lotus-like titanium[J]. Biofouling, 28, 539-550(2012). http://www.ncbi.nlm.nih.gov/pubmed/22686938

    [138] Yong J, Fang Y, Chen F. et al. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: Separating oil from water and corrosive solutions[J]. Applied Surface Science, 389, 1148-1155(2016).

    [139] Li G, Fan H, Ren F. et al. Multifunctional ultrathin aluminum foil: Oil/water separation and particle filtration[J]. Journal of Materials Chemistry A, 4, 18832-18840(2016). http://pubs.rsc.org/en/content/articlepdf/2016/ta/c6ta08231a

    [140] Sarbada S, Shin Y. Superhydrophobic contoured surfaces created on metal and polymer using a femtosecond laser[J]. Applied Surface Science, 405, 465-475(2017). http://www.sciencedirect.com/science/article/pii/S0169433217303707

    [141] Ren F, Li G, Zhang Z. et al. A single-layer Janus membrane with dual gradient conical micropore arrays for self-driving fog collection[J]. Journal of Materials Chemistry A, 5, 18403-18408(2017). http://pubs.rsc.org/en/content/articlepdf/2017/ta/c7ta04392a

    [142] Lu Y, Yu L, Zhang Z. et al. Biomimetic surfaces with anisotropic sliding wetting by energy-modulation femtosecond laser irradiation for enhanced water collection[J]. RSC Advanced, 7, 11170-11179(2017).

    [143] Wang A, Jiang L, Li X. et al. Low-adhesive superhydrophobic surface-enhanced Raman spectroscopy substrate fabricated by femtosecond laser ablation for ultratrace molecular detection[J]. Journal of Materials Chemistry B, 5, 777-784(2017).

    Jingzhou Zhang, Feng Chen, Jiale Yong, Qing Yang, Xun Hou. Research Progress on Bioinspired Superhydrophobic Surface Induced by Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2018, 55(11): 110001
    Download Citation