• Laser & Optoelectronics Progress
  • Vol. 54, Issue 12, 120007 (2017)
Huang Minshuang*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.120007 Cite this Article Set citation alerts
    Huang Minshuang. Time-of-Flight Laser Ranging Technique of Single Transmitted Pulse[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120007 Copy Citation Text show less
    References

    [1] Amann M C, Myllylae R A. Laser ranging: a critical review of unusual techniques for distance measurement[J]. Optical Engineering, 2001, 40(1): 10-19.

    [2] Kostamovaara J T, Maatta K E, Myllylae R A. Pulsed time-of-flight laser range-finding techniques for industrial applications[C]. SPIE, 1992, 1612: 283-295.

    [3] Thiel K H, Wehr A. Performance capabilities of laser scanners—an overview and measurement principle analysis[C]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2004: 14-18.

    [4] Zhao Dawei, Pei Hailong, Ding Jie, et al. Research of the unmanned plane airborne lidar system strip stitching method[J]. Chinese J Lasers, 2015, 42(1): 0114002.

    [5] Mallet C, Bretar F. Full-waveform topographic lidar: state-of-the-art[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2009, 64(1): 1-16.

    [6] Coffey V C. Imaging in 3-D: killer apps coming soon to a device near you![J]. Optics & Photonics News, 2014, 25(6): 36-43.

    [7] Schwarz B. Lidar: mapping the world in 3D[J]. Nature Photonics, 2010, 4(7): 429-430.

    [8] Velupillai S, Guvenc L. Laser scanners for driver-assistance systems in intelligent vehicles applications of control[J]. IEEE Control Systems, 2009, 29(2): 17-19.

    [9] Huang M S, Huang J F, Tang J, et al. Research on 3-D real-time measurement system of seam with laser[C]. Fifth International Conference on Measuring Technology and Mechatronics Automation, 2013: 870-874.

    [10] Ruotsalainen T, Palojarvi P, Kostamovaara J. A wide dynamic range receiver channel for a pulsed time-of-flight laser radar[J]. IEEE Journal of Solid-State Circuits, 2001, 36(8): 1228-1238.

    [11] Kurtti S, Kostamovaara J. Anintegrated laser radar receiver channel utilizing a time-domain walk error compensation scheme[J]. IEEE Transactions on Instrumentation & Measurement, 2011, 60(1): 146-157.

    [12] Anghinolfi F, Jarron P, Krummenacher F, et al. NINO, an ultra-fast, low-power, front-end amplifier discriminator for the time-of-flight detector in ALICE experiment[C]. Nuclear Science Symposium Conference Record, 2003: 8066596.

    [13] Despeisse M, Powolny F, Jarron P, et al. Multi-channel amplifier-discriminator for highly time-resolved detection[J]. IEEE Transactions on Nuclear Science, 2011, 58(1): 202-208.

    [14] Zhai Dongsheng, Tang Rufeng, Huang Kai, et al. Analysis on detection performance of satellite laser ranging based on Geiger mode APD arrays[J]. Chinese J Lasers, 2015, 42(6): 0608007.

    [15] Sun Junling, Sun Guangmin, Ma Pengge, et al. Laser target localization based on symmetric wavelet denoising and asymmetric Gauss fitting[J]. Chinese J Lasers, 2017, 44(6): 0604001.

    [16] Huang Minshuang, Long Tengyu, Liu Huihui, et al. A high-precision pulsed laser ranging time interval measurement technology based on sine curves method[J]. Chinese J Lasers, 2014, 41(8): 0808002.

    [17] Abidi A A. On the noise optimum of gigahertz FET transimpedance amplifiers[J]. IEEE Journal of Solid-State Circuits, 1987, 22(6): 1207-1209.

    [18] Kostamovaara J T, Myllylae R A, Myllyl R, et al. Pulsed laser radars with high-modulation frequency in industrial applications[C]. SPIE, 1992, 163: 114-127.

    [19] Peltola T, Ruotsalainen T, Palojarvi P, et al. A receiver channel with a leading edge timing discriminator for a pulsed time-of-flight laser radar[C]. European Solid-State Circuits Conference, 2000: 427-430.

    [20] Kostamovaara J, Nissinen J, Kurtti S, et al. On the minimization of timing walk in industrial pulsed time-of-flight laser radars[C]. SPIE, 2009, 7356: 2838-2847.

    [21] Palojarvi P, Ruotsalainen T, Kostamovaara J. A 250-MHz BiCMOS receiver channel with leading edge timing discriminator for a pulsed time-of-flight laser rangefinder[J]. IEEE Journal of Solid-State Circuits, 2005, 40(6): 1341-1349.

    [22] Nissinen J, Kostamovaara J. A 0.13 μm CMOS laser radar receiver with leading edge detection and time domain error compensation[C]. IEEE Instrumentation and Measurement Technology Conference, 2009: 10789914.

    [23] Huang Junfen, Huang Minshuang, Sun Yaling, et al. High precision time-interval measurement method based on pseudo-nonuniform sampling[J]. Journal of Optoelectronics·Laser, 2012, 23(10): 1945-1948.

    [24] Kurtti S, Kostamovaara J. Laser radar receiver channel with timing detector based on front end unipolar-to-bipolar pulse shaping[J]. IEEE Journal of Solid-State Circuits, 2009, 44(3): 835-847.

    [25] Ruotsalainen T, Palojarvi P, Kostamovaara J. A wide dynamic range receiver channel for a pulsed time-of-flight laser radar[J]. IEEE Journal of Solid-State Circuits, 2001, 36(8): 1228-1238.

    [26] Pehkonen J, Kostamovaara J. Walk error minimisation by resonance-based laser pulse timing detection[J]. Electronics Letters, 2003, 39(23): 1624-1625.

    CLP Journals

    [1] Gengcheng Xie, Yidong Ye, Jianming Li, Xuewen Yuan. Echo Characteristics and Range Error for Pulse Laser Ranging[J]. Chinese Journal of Lasers, 2018, 45(6): 0610001

    Huang Minshuang. Time-of-Flight Laser Ranging Technique of Single Transmitted Pulse[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120007
    Download Citation