• Photonics Research
  • Vol. 6, Issue 6, 630 (2018)
Jinhua Li and Xiangdong Zhang*
Author Affiliations
  • Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.1364/PRJ.6.000630 Cite this Article Set citation alerts
    Jinhua Li, Xiangdong Zhang. Electric field tunable strong transverse light current from nanoparticles embedded in liquid crystal[J]. Photonics Research, 2018, 6(6): 630 Copy Citation Text show less
    References

    [1] B. A. van Tiggelen. Transverse diffusion of light in Faraday-active media. Phys. Rev. Lett., 75, 422-424(1995).

    [2] G. L. J. A. Rikken, B. A. van Tiggelen. Observation of magnetically induced transverse diffusion of light. Nature, 381, 54-55(1996).

    [3] A. Sparenberg, G. L. J. A. Rikken, B. A. van Tiggelen. Observation of photonic magnetoresistance. Phys. Rev. Lett., 79, 757-760(1997).

    [4] G. L. J. A. Rikken, A. Sparenberg, B. A. van Tiggelen. Photonic magneto-transport. Physica B, 246–247, 188-194(1998).

    [5] S. Wiebel, A. Sparenberg, G. L. J. A. Rikken, D. Lacoste, B. A. van Tiggelen. Photonic Hall effect in absorbing media. Phys. Rev. E, 62, 8636-8639(2000).

    [6] F. C. MacKintosh, S. John. Coherent backscattering of light in the presence of time-reversal-noninvariant and parity-nonconserving media. Phys. Rev. B, 37, 1884-1897(1988).

    [7] B. A. van Tiggelen, R. Maynard, T. M. Nieuwenhuizen. Theory for multiple light scattering from Rayleigh scatterers in magnetic fields. Phys. Rev. E, 53, 2881-2908(1996).

    [8] D. Lacoste, B. A. van Tiggelen, G. L. J. A. Rikken, A. Sparenberg. Optics of a Faraday-active Mie sphere. J. Opt. Soc. Am. A, 15, 1636-1642(1998).

    [9] Z. Lin, S. T. Chui. Electromagnetic scattering by optically anisotropic magnetic particle. Phys. Rev. E, 69, 056614(2004).

    [10] M. Briane, G. W. Milton. Homogenization of the three-dimensional Hall effect and change of sign of the Hall coefficient. Arch. Ration. Mech. Anal., 193, 715-736(2009).

    [11] C. Kern, M. Kadic, M. Wegener. Experimental evidence for sign reversal of the Hall coefficient in three-dimensional metamaterials. Phys. Rev. Lett., 118, 016601(2017).

    [12] M. Zhang, X. Zhang. Electric field tunable photonic Hall effect with liquid crystals. Phys. Lett. A, 378, 1571-1577(2014).

    [13] Y. L. Xu. Electromagnetic scattering by an aggregate of spheres. Appl. Opt., 34, 4573-4588(1995).

    [14] X. D. Wang, X.-G. Zhang, Q. L. Yu, B. N. Harmon. Multiple-scattering theory for electromagnetic waves. Phys. Rev. B, 47, 4161-4167(1993).

    [15] A. Moroz. Density-of-states calculations and multiple-scattering theory for photons. Phys. Rev. B, 51, 2068-2081(1995).

    [16] F. J. García de Abajo. Multiple scattering of radiation in clusters of dielectrics. Phys. Rev. B, 60, 6086-6102(1999).

    [17] J. Ng, Z. F. Lin, C. T. Chan, P. Sheng. Photonic clusters formed by dielectric microspheres: numerical simulations. Phys. Rev. B, 72, 085130(2005).

    [18] Q. Zhao, L. Kang, B. Li, J. Zhou. Tunable negative refraction in nematic liquid crystals. Appl. Phys. Lett., 89, 221918(2006).

    [19] J. Dintinger, B.-J. Tang, X. Zeng, F. Liu, T. Kienzler, G. H. Mehl, G. Ungar, C. Rockstuhl, T. Scharf. A self-organized anisotropic liquid-crystal plasmonic metamaterial. Adv. Mater., 25, 1999-2004(2013).

    [20] J. Muller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, J. Feldmann. Electrically controlled light scattering with single metal nanoparticles. Appl. Phys. Lett., 81, 171-173(2002).

    [21] J. W. Taylor, L. K. Kurihara, L. J. Martinez-Miranda. Interaction of a bi-molecular liquid crystal film with functionalized nanoparticles. Appl. Phys. Lett., 100, 173115(2012).

    [22] H. Takeda, K. Yoshino. Tunable refraction effects in two-dimensional photonic crystals utilizing liquid crystals. Phys. Rev. E, 67, 056607(2003).

    [23] Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, J.-C. Lee. Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals. Appl. Phys. Lett., 79, 15-17(2001).

    [24] D. W. Berreman. Optics in smoothly varying anisotropic planar structures: Application to liquid-crystal twist cells. J. Opt. Soc. Am., 63, 1374-1380(1973).

    [25] C. F. Bohren, D. R. Huffman. Absorption and Scattering of Light by Small Particles(1983).

    [26] A. Stratton. Electromagnetic Theory(1941).

    [27] B. Friedman, J. Russek. Addition theorems for spherical waves. Q. Appl. Math., 12, 13-23(1954).

    [28] A. Stein. Addition theorems for spherical wave functions. Q. Appl. Math., 19, 15-24(1961).

    [29] O. R. Cruzan. Translational addition theorems for spherical vector wave functions. Q. Appl. Math., 20, 33-40(1962).

    [30] W. C. Chew. Waves and Fields in Inhomogeneous Media(1995).

    [31] M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, M. R. Querry. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt., 24, 4493-4499(1985).

    [32] J. A. Scholl, A. l. Koh, J. A. Dionne. Quantum plasmon resonances of individual metallic nanoparticles. Nature, 483, 421-427(2012).

    [33] T. Christensen, W. Yan, S. Raza, A.-P. Jauho, N. A. Mortensen, M. Wubs. Nonlocal response of metallic nanospheres probed by light, electrons, and atoms. ACS Nano, 8, 1745-1758(2014).

    [34] N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, S. I. Bozhevolnyi. A generalized non-local optical response theory for plasmonic nanostructures. Nat. Commun., 5, 3809(2014).

    [35] C. David, F. J. García de Abajo. Spatial nonlocality in the optical response of metal nanoparticles. J. Phys. Chem. C, 115, 19470-19475(2011).

    [36] J. Xu, X. Zhang. Second harmonic generation in three-dimensional structures based on homogeneous centrosymmetric metallic spheres. Opt. Express, 20, 1668-1684(2012).

    Jinhua Li, Xiangdong Zhang. Electric field tunable strong transverse light current from nanoparticles embedded in liquid crystal[J]. Photonics Research, 2018, 6(6): 630
    Download Citation