• Photonics Research
  • Vol. 12, Issue 4, 712 (2024)
Mu Yang1、†, Ya Xiao2、†, Ze-Yan Hao1、3, Yu-Wei Liao1、3, Jia-He Cao1、3, Kai Sun1、3、4, En-Hui Wang1、5, Zheng-Hao Liu1、3, Yutaka Shikano6、7、8、9、10、11、*, Jin-Shi Xu1、3、4、12、*, Chuan-Feng Li1、3、4、13、*, and Guang-Can Guo1、3、4
Author Affiliations
  • 1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • 2College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China
  • 3CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
  • 4Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
  • 5Electric Power Research Institute, State Grid Anhui Electric Power Co., Ltd., Hefei 230601, China
  • 6Institute of Systems and Information Engineering, University of Tsukuba, Ibaraki 305-8573, Japan
  • 7Center for Artificial Intelligence Research, University of Tsukuba, Ibaraki 305-8577, Japan
  • 8Graduate School of Science and Technology, Gunma University, Gunma 371-8510, Japan
  • 9Institute for Quantum Studies, Chapman University, Orange, California 92866, USA
  • 10JST PRESTO, Saitama 332-0012, Japan
  • 11e-mail: yshikano@cs.tsukuba.ac.jp
  • 12e-mail: jsxu@ustc.edu.cn
  • 13e-mail: cfli@ustc.edu.cn
  • show less
    DOI: 10.1364/PRJ.498498 Cite this Article Set citation alerts
    Mu Yang, Ya Xiao, Ze-Yan Hao, Yu-Wei Liao, Jia-He Cao, Kai Sun, En-Hui Wang, Zheng-Hao Liu, Yutaka Shikano, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo. Entanglement quantification via weak measurements assisted by deep learning[J]. Photonics Research, 2024, 12(4): 712 Copy Citation Text show less
    References

    [1] C. H. Bennett, G. Brassard, C. Crepeau. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 70, 1895(1993).

    [2] A. K. Ekert. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett., 67, 661(1991).

    [3] D. P. DiVincenzo. Quantum computation. Science, 270, 255(1995).

    [4] R. Horodecki, P. Horodecki, M. Horodecki. Quantum entanglement. Rev. Mod. Phys., 81, 865(2009).

    [5] K. E. Dorfman, F. Schlawin, S. Mukamel. Nonlinear optical signals and spectroscopy with quantum light. Rev. Mod. Phys., 88, 045008(2016).

    [6] D. F. V. James, P. G. Kwiat, W. J. Munro. Measurement of qubits. Phys. Rev. A, 64, 052312(2001).

    [7] W. K. Wootters. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett., 80, 2245(1998).

    [8] R. Hildebrand. Concurrence revisited. J. Math. Phys., 48, 102108(2007).

    [9] D. T. Smithey, M. Beck, M. G. Raymer. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum. Phys. Rev. Lett., 70, 1244-1247(1993).

    [10] G. Breitenbach, S. Schiller, J. Mlynek. Measurement of the quantum states of squeezed light. Nature, 387, 471-475(1997).

    [11] P. Horodecki. Measuring quantum entanglement without prior state reconstruction. Phys. Rev. Lett., 90, 167901(2003).

    [12] S. P. Walborn, P. S. Ribeiro, L. Davidovich. Experimental determination of entanglement with a single measurement. Nature, 440, 1022-1024(2006).

    [13] M. Yang, Y. Xiao, Y. W. Liao. Zonal reconstruction of photonic wavefunction via momentum weak measurement. Laser Photonics Rev., 14, 1900251(2020).

    [14] J. Z. Salvail, M. Agnew, A. S. Johnson. Full characterization of polarization states of light via direct measurement. Nat. Photonics, 7, 316-321(2013).

    [15] W. W. Pan, X. Y. Xu, Y. Kedem. Direct measurement of a nonlocal entangled quantum state. Phys. Rev. Lett., 123, 150402(2019).

    [16] K. O’Shea, R. Nash. An introduction to convolutional neural networks. arXiv(2015).

    [17] Y. Xiao, X. J. Ye, K. Sun. Demonstration of multisetting one-way Einstein-Podolsky-Rosen steering in two-qubit systems. Phys. Rev. Lett., 118, 140404(2017).

    [18] M. Tukiainen, H. Kobayashi, Y. Shikano. Quantification of concurrence via weak measurement. Phys. Rev. A, 95, 052301(2017).

    [19] H. Kobayashi, K. Nonaka, Y. Shikano. Stereographical visualization of a polarization state using weak measurements with an optical-vortex beam. Phys. Rev. A, 89, 053816(2014).

    [20] Y. Aharonov, D. Z. Albert, L. Vaidman. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett., 60, 1351-1354(1988).

    [21] J. Dressel, M. Malik, F. M. Miatto. Colloquium: understanding quantum weak values: basics and applications. Rev. Mod. Phys., 86, 307-316(2014).

    [22] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436-444(2015).

    [23] G. Carleo, M. Troyer. Solving the quantum many-body problem with artificial neural networks. Science, 355, 602-606(2017).

    [24] G. Torlai, G. Mazzola, J. Carrasquilla. Neural-network quantum state tomography. Nat. Phys., 14, 447-450(2018).

    [25] J. Gao, L. F. Qiao, Z. Q. Jiao. Experimental machine learning of quantum states. Phys. Rev. Lett., 120, 240501(2018).

    [26] M. Yang, C. L. Ren, Y. C. Ma. Experimental simultaneous learning of multiple nonclassical correlations. Phys. Rev. Lett., 123, 190401(2019).

    [27] D. P. Kingma, J. Ba. Adam: a method for stochastic optimization. arXiv(2014).

    [28] A. Fedrizzi, T. Herbst, A. Poppe. A wavelength-tunable fiber-coupled source of narrowband entangled photons. Opt. Express, 15, 15377-15386(2007).

    [29] S. Kocsis, B. Braverman, S. Ravets. Observing the average trajectories of single photons in a two-slit interferometer. Science, 332, 1170-1173(2011).

    [30] Z. H. Ma, Z. H. Chen, J. L. Chen. Measure of genuine multipartite entanglement with computable lower bounds. Phys. Rev. A, 83, 062325(2011).

    [31] Y. Shikano, A. Hosoya. Weak values with decoherence. J. Phys. A: Math. Theor., 43, 025304(2010).

    [32] G. Puentes, N. Hermosa, J. P. Torres. Weak measurements with orbital-angular-momentum pointer states. Phys. Rev. Lett., 109, 040401(2012).

    [33] H. Kobayashi, G. Puentes, Y. Shikano. Extracting joint weak values from two-dimensional spatial displacements. Phys. Rev. A, 86, 053805(2012).

    [34] Y. Turek, H. Kobayashi, T. Akutsu. Post-selected von Neumann measurement with Hermite–Gaussian and Laguerre–Gaussian pointer states. New J. Phys., 17, 083029(2015).

    Mu Yang, Ya Xiao, Ze-Yan Hao, Yu-Wei Liao, Jia-He Cao, Kai Sun, En-Hui Wang, Zheng-Hao Liu, Yutaka Shikano, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo. Entanglement quantification via weak measurements assisted by deep learning[J]. Photonics Research, 2024, 12(4): 712
    Download Citation