• Photonics Research
  • Vol. 12, Issue 4, 712 (2024)
Mu Yang1、†, Ya Xiao2、†, Ze-Yan Hao1、3, Yu-Wei Liao1、3, Jia-He Cao1、3, Kai Sun1、3、4, En-Hui Wang1、5, Zheng-Hao Liu1、3, Yutaka Shikano6、7、8、9、10、11、*, Jin-Shi Xu1、3、4、12、*, Chuan-Feng Li1、3、4、13、*, and Guang-Can Guo1、3、4
Author Affiliations
  • 1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • 2College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China
  • 3CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
  • 4Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
  • 5Electric Power Research Institute, State Grid Anhui Electric Power Co., Ltd., Hefei 230601, China
  • 6Institute of Systems and Information Engineering, University of Tsukuba, Ibaraki 305-8573, Japan
  • 7Center for Artificial Intelligence Research, University of Tsukuba, Ibaraki 305-8577, Japan
  • 8Graduate School of Science and Technology, Gunma University, Gunma 371-8510, Japan
  • 9Institute for Quantum Studies, Chapman University, Orange, California 92866, USA
  • 10JST PRESTO, Saitama 332-0012, Japan
  • 11e-mail: yshikano@cs.tsukuba.ac.jp
  • 12e-mail: jsxu@ustc.edu.cn
  • 13e-mail: cfli@ustc.edu.cn
  • show less
    DOI: 10.1364/PRJ.498498 Cite this Article Set citation alerts
    Mu Yang, Ya Xiao, Ze-Yan Hao, Yu-Wei Liao, Jia-He Cao, Kai Sun, En-Hui Wang, Zheng-Hao Liu, Yutaka Shikano, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo. Entanglement quantification via weak measurements assisted by deep learning[J]. Photonics Research, 2024, 12(4): 712 Copy Citation Text show less

    Abstract

    Entanglement has been recognized as being crucial when implementing various quantum information tasks. Nevertheless, quantifying entanglement for an unknown quantum state requires nonphysical operations or post-processing measurement data. For example, evaluation methods via quantum state tomography require vast amounts of measurement data and likely estimation. Although a direct entanglement determination has been reported for the unknown pure state, it is still tricky for the mixed state. In this work, assisted by weak measurement and deep learning technology, we directly detect the entanglement (namely, the concurrence) of a class of two-photon polarization-entangled mixed states both theoretically and experimentally according to the local photon spatial distributions after weak measurement. In this way, the number of projective bases is much smaller than that required in quantum state tomography.
    ρAB(p,θ)=p|ψθψθ|+(1p)IA/2ρBθ,

    View in Article

    ρBΓA=TrA[ρABΓAIB]Tr[ρABΓAIB].

    View in Article

    σ^xk|ΓAw=Tr[σ^xρBΓA|kk|]Tr[ρBΓA|kk|],

    View in Article

    C(ρAB)=(3|σ^x0|ΓAw||σ^x1|ΓAw|1)|σ^x0|ΓAw||σ^x1|ΓAw||σ^x0|ΓAw|+|σ^x1|ΓAw|.

    View in Article

    C(|ψ)=minγiγ2(1Tr[ργi2]),

    View in Article

    |ψAB=i,j=02aij|ijAB,i,j=02|aij|2=1.

    View in Article

    ρBΓA=i,j=0,1ρij|ij|.(A1)

    View in Article

    σ^x0|w=Tr[σ^xρBΓA|00|]Tr[ρBΓA|00|]=ρ10ρ00,σ^x1|w=Tr[σ^xρBΓA|11|]Tr[ρBΓA|11|]=ρ01ρ11.(A2)

    View in Article

    ρ00=|σ^x1|w||σ^x0|w|+|σ^x1|w|,ρ01=|σ^x0|w|σ^x1|w|σ^x0|w|+|σ^x1|w|,ρ10=|σ^x1|w|σ^x0|w|σ^x0|w|+|σ^x1|w|,ρ11=|σ^x0|w||σ^x0|w|+|σ^x1|w|,(A3)

    View in Article

    ρBΓA(r)=12(I+r·σ),(B1)

    View in Article

    d=rsinθ1rcosθ.(B2)

    View in Article

    1|σ^xw=ρ10ρ11=reiϕsinθ1rcosθ.(B3)

    View in Article

    ρBΓA=i,j=0,1ρij|ij|.(C1)

    View in Article

    σ^xk|w=Tr[σ^xρBΓA|kk|]Tr[ρBΓA|kk|]=i,j=0,1ρijk|σ^x|ij|ki,j=0,1ρijk|ij|k.(C2)

    View in Article

    ρall=i,j=0,1ρij|ij||ϕl(x,y)ϕl(x,y)|.(C3)

    View in Article

    ρallf=UρallU,(C4)

    View in Article

    rclρpf=Tr[ρallf|kk|Ip]=i,j=0,1ρijk|eiζσ^xPx|i×|ϕl(x,y)ϕl(x,y)|×j|eiζσ^xPx|k=i,j=0,1ρijk|ii,j=0,1ρijk|eiζσ^xPx|ij|ki,j=0,11ρijk|ij|k×|ϕl(x,y)ϕl(x,y)|×i,j=0,1ρijj|eiζσ^xPx|kk|ii,j=0,1ρijk|ij|kj|k.(C5)

    View in Article

    rclρpf=i,j=0,1ρijk|ij|keiζk|σ^xwPx×|ϕl(x,y)ϕl(x,y)|eiζk|σ^xwPx=i,j=0,1ρijk|ij|k×|ϕl(xζk|σ^xw,y)ϕl(xζk|σ^xw,y)|.(C6)

    View in Article

    ϕl(xζσ^xk|w,y)=ϕl(xζRe[σ^xk|w],yζIm[σ^xk|w]).(C7)

    View in Article

    conv=(θ11θ12θ13θ21θ22θ23θ31θ32θ33).(D1)

    View in Article

    Oi,j=k,l=13Ii+k,j+lθk,l,(D2)

    View in Article

    Mi,j=max(Oi,j,Oi+1,j,Oi,j+1,Oi+1,j+1).(D3)

    View in Article

    x1=σRL(W1x+b1),x2=σRL(W2x1+b2),x3=σRL(W3x2+b3),C=W4x3+b4.(D4)

    View in Article

    Mu Yang, Ya Xiao, Ze-Yan Hao, Yu-Wei Liao, Jia-He Cao, Kai Sun, En-Hui Wang, Zheng-Hao Liu, Yutaka Shikano, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo. Entanglement quantification via weak measurements assisted by deep learning[J]. Photonics Research, 2024, 12(4): 712
    Download Citation