• Journal of Inorganic Materials
  • Vol. 35, Issue 1, 131 (2020)
Bao-Kai MA1、2、3, Mian LI3, Ling-Zhi CHEONG2、*, Xin-Chu WENG1, Cai SHEN3, and Qing HUANG3
Author Affiliations
  • 1School of Life and Sciences, Shanghai University, Shanghai 200444, China
  • 2Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
  • 3Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • show less
    DOI: 10.15541/jim20190139 Cite this Article
    Bao-Kai MA, Mian LI, Ling-Zhi CHEONG, Xin-Chu WENG, Cai SHEN, Qing HUANG. Enzyme-MXene Nanosheets: Fabrication and Application in Electrochemical Detection of H2O2[J]. Journal of Inorganic Materials, 2020, 35(1): 131 Copy Citation Text show less
    References

    [1] R ZHANG, W CHEN. Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors. Biosensors & bioelectronics, 89, 249-268(2017).

    [2] D ADMINISTRATION F. Code of Federal Regulations, 21CFR184..

    [3] H DAI, W LU, X ZUO et al. A novel biosensor based on boronic acid functionalized metal-organic frameworks for the determination of hydrogen peroxide released from living cells. Biosensors & Bioelectronics, 95, 131-137(2017).

    [4] Y WANG, J ZHAO K, Q ZHANG Z et al. Simple approach to fabricate a highly sensitive H2O2 biosensor by one-step of graphene oxide and horseradish peroxidase co-immobilized glassy carbon electrode. International Journal of Electrochemical, 13, 2921-2933(2018).

    [5] Y CHANG M C, A PRALLE, Y ISACOFF E et al. A selective, cell-permeable optical probe for hydrogen peroxide in living cells. Journal of the American Chemical Society, 126, 15392-15393(2004).

    [6] M SHARMA, C KOTHARI, O SHERIKAR et al. Concurrent estimation of amlodipine besylate, hydrochlorothiazide and valsartan by RP-HPLC, HPTLC and UV-Spectrophotometry. Journal of Chromatographic Science, 52, 27-35(2014).

    [7] C MATSUBARA, N KAWAMOTO, K TAKAMURA. Oxo[5, 10, 15, 20-tetra(4-pyridyl)porphyrinato]titanium(IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst, 117, 1781-1784(1992).

    [8] K ZHOU, Y ZHU, X YANG et al. A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites. Electrochimica Acta, 55, 3055-3060(2010).

    [9] K THENMOZHI, S NARAYANAN S. Horseradish peroxidase and toluidine blue covalently immobilized leak-free Sol-Gel composite biosensor for hydrogen peroxide. Materials Science & Engineering C,Materials for Biological Applications, 70, 223-230(2017).

    [10] K MA B, Z CHEONG L, C WENG X et al. Lipase@ZIF-8 nanoparticles-based biosensor for direct and sensitive detection of methyl parathion. Electrochimica Acta, 283, 509-516(2018).

    [11] I JOS´E, O REYES-DE-CORCUERA H E, R GARC´ıA-TORRES A. Stability and Stabilization of Enzyme Biosensors: The Key to Successful Application and Commercialization.(2018).

    [12] Y LIU, X LIU, Z GUO et al. Horseradish peroxidase supported on porous graphene as a novel sensing platform for detection of hydrogen peroxide in living cells sensitively. Biosensors & Bioelectronics, 87, 101-107(2017).

    [13] J ZHENG, J DIAO, Y JIN et al. An inkjet printed Ti3C2-GO electrode for the electrochemical sensing of hydrogen peroxide. Journal of The Electrochemical Society, 165, B227-B231(2018).

    [14] Q ZHAO M, X XIE, E REN C et al. Hollow mxene spheres and 3D macroporous mxene frameworks for Na-ion storage. Advanced Materials, 29, 1702410(2017).

    [15] J ZHOU, X ZHA, X ZHOU et al. Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano, 11, 3841-3850(2017).

    [16] B XU, M ZHU, W ZHANG et al. Ultrathin MXene-micropattern- based field-effect transistor for probing neural activity. Advanced Materials, 28, 3333-3339(2016).

    [17] L LORENCOVA, T BERTOK, E DOSEKOVA et al. Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing. Electrochimica Acta, 235, 471-479(2017).

    [18] L LORENCOVA, T BERTOK, J FILIP et al. Highly stable Ti3C2Tx(MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications. Sensors and Actuators B: Chemical, 263, 360-368(2018).

    [19] F WANG, C YANG, M DUAN et al. TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosensors and Bioelectronics, 74, 1022-1028(2015).

    [20] H LIU, C DUAN, C YANG et al. A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sensors and Actuators B: Chemical, 218, 60-66(2015).

    [21] B RAKHI R, P NAYAK, C XIA et al. Novel amperometric glucose biosensor based on MXene nanocomposite. Scientific Reports, 6, 36422(2016).

    [22] C VEITCH N. Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry, 65, 249-259(2004).

    [23] Q REN Q, J WU, C ZHANG W et al. Real-time in vitro detection of cellular H2O2 under camptothecin stress using horseradish peroxidase, ionic liquid, and carbon nanotube-modified carbon fiber ultramicroelectrode. Sensors and Actuators B: Chemical, 245, 615-621(2017).

    [24] M LI, M HAN, J ZHOU et al. Novel scale-like structures of graphite/TiC/Ti3/C2 hybrids for electromagnetic absorption. Advanced Electronic Materials, 4, 1700617(2018).

    [25] C SHAN, H YANG, D HAN et al. Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosensors & bioElectronics, 25, 1070-1074(2010).

    [26] F WANG, C YANG, C DUAN et al. An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor. Journal of The Electrochemical Society, 162, B16-B21(2014).

    [27] B KANG X, C PANG G, Y LIANG X et al. Study on a hydrogen peroxide biosensor based on horseradish peroxidase/GNPs-thionine/ chitosan. Electrochimica Acta, 62, 327-334(2012).

    [28] E KOPOSOVA, X LIU, A KISNER et al. Bioelectrochemical systems with oleylamine-stabilized gold nanostructures and horseradish peroxidase for hydrogen peroxide sensor. Biosensors & Bioelectronics, 57, 54-58(2014).

    [29] S YANG, S DING, L LI et al. One-step preparation of direct electrochemistry HRP biosensor via electrodeposition. Journal of The Electrochemical Society, 164, B710-B714(2017).

    [30] W CHEN, W YANG, Y LU et al. Encapsulation of enzyme into mesoporous cages of metal-organic frameworks for the development of highly stable electrochemical biosensors. Analytical Methods, 9, 3213-3220(2017).

    [31] J BARD A, R FAULKNER L, J LEDDY. Electrochemical methods: Fundamentals and Applications. Wiley New York(1980).

    [32] H SONG, Y NI, S KOKOT. Investigations of an electrochemical platform based on the layered MoS2-graphene and horseradish peroxidase nanocomposite for direct electrochemistry and electrocatalysis. Biosensors & Bioelectronics, 56, 137-143(2014).

    [33] M MART N, P SALAZAR, R VILLALONGA et al. Preparation of core-shell Fe3O4@poly(dopamine) magnetic nanoparticles for biosensor construction. J. Mater. Chem. B, 2, 739-746(2014).

    Bao-Kai MA, Mian LI, Ling-Zhi CHEONG, Xin-Chu WENG, Cai SHEN, Qing HUANG. Enzyme-MXene Nanosheets: Fabrication and Application in Electrochemical Detection of H2O2[J]. Journal of Inorganic Materials, 2020, 35(1): 131
    Download Citation