• Photonics Research
  • Vol. 3, Issue 6, 317 (2015)
Zeyu Pan1, Harish Subbaraman2, Yi Zou1, Xiaochuan Xu2, Xingyu Zhang1, Cheng Zhang3, Qiaochu Li3, L. Jay Guo3, and Ray T. Chen2、4、*
Author Affiliations
  • 1Microelectronic Research Center, Department of Electrical and Computer Engineering, The University of Texas atAustin, Austin, Texas 78758, USA
  • 2Omega Optics, Inc., 8500 Shoal Creek Blvd, Austin, Texas 78757, USA
  • 3Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave, Ann Arbor,Michigan 48109, USA
  • 4Microelectronic Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA
  • show less
    DOI: 10.1364/PRJ.3.000317 Cite this Article Set citation alerts
    Zeyu Pan, Harish Subbaraman, Yi Zou, Xiaochuan Xu, Xingyu Zhang, Cheng Zhang, Qiaochu Li, L. Jay Guo, Ray T. Chen. Quasi-vertical tapers for polymer-waveguide-based interboard optical interconnects[J]. Photonics Research, 2015, 3(6): 317 Copy Citation Text show less
    References

    [1] Z. Pan, H. Subbaraman, X. Lin, Q. Li, C. Zhang, T. Ling, L. J. Guo, R. T. Chen. Reconfigurable thermo-optic polymer switch based True-Time-Delay network utilizing imprinting and inkjet printing. Proc. SPIE, 9362, 936214(2014).

    [2] Z. Pan, H. Subbaraman, C. Zhang, A. Panday, Q. Li, X. Zhang, Y. Zou, X. Xu, L. J. Guo, R. T. Chen. Reconfigurable thermo-optic polymer switch based true-time-delay network utilizing imprinting and inkjet printing. Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VIII, 936214(2015).

    [3] G. Coppola, L. Sirleto, I. Rendina, M. Iodice. Advance in thermo-optical switches: principles, materials, design, and device structure. Opt. Eng., 50, 071112(2011).

    [4] D. M. Zhang, X. Q. Sun, F. Wang, C. M. Chen. Fast polymer thermo-optic switch with silica under-cladding. 2013 IEEE International Symposium on Next-Generation Electronics (ISNE), 92-94(2013).

    [5] X. Niu, Y. Zheng, Y. Gu, C. Chen, Z. Cai, Z. Shi, F. Wang, X. Sun, Z. Cui, D. Zhang. Thermo-optic waveguide gate switch arrays based on direct UV-written highly fluorinated low-loss photopolymer. Appl. Opt., 53, 6698-6705(2014).

    [6] X. Wang, B. Howley, M. Y. Chen, Q. Zhou, R. Chen, P. Basile. Polymer-based thermo-optic switch for optical true time delay. Proc. SPIE, 5728, 60-67(2005).

    [7] B. Howley, X. Wang, M. Chen, R. T. Chen. Reconfigurable delay time polymer planar lightwave circuit for an X-band phased-array antenna demonstration. J. Lightwave Technol., 25, 883-890(2007).

    [8] X. Wang, B. Howley, M. Y. Chen, R. T. Chen. Phase error corrected 4-bit true time delay module using a cascaded 2 × 2 polymer waveguide switch array. Appl. Opt., 46, 379-383(2007).

    [9] A. Yeniay, G. Renfeng. True time delay photonic circuit based on perfluorpolymer waveguides. IEEE Photon. Technol. Lett., 22, 1565-1567(2010).

    [10] J. Capmany, D. Novak. Microwave photonics combines two worlds. Nat. Photonics, 1, 319-330(2007).

    [11] B. Howley, C. Yihong, X. Wang, Z. Qingjun, Z. Shi, Y. Jiang, Y. Chen. 2-bit reconfigurable true time delay lines using 2 × 2 polymer waveguide switches. IEEE Photon. Technol. Lett., 17, 1944-1946(2005).

    [12] W.-J. Chin, D.-H. Kim, J.-H. Song, S.-S. Lee. Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator. Jpn. J. Appl. Phys., 45, 2576-2579(2006).

    [13] X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, R. T. Chen. Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects. IEEE J. Sel. Top. Quantum Electron., 19, 196-210(2013).

    [14] X. Lin, A. Hosseini, X. Dou, H. Subbaraman, R. T. Chen. Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler. Opt. Express, 21, 60-69(2013).

    [15] R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. Deshazer, W. K. Weidner. Development of versatile polymer waveguide flex technology for use in optical interconnects. J. Lightwave Technol., 31, 3915-3926(2013).

    [16] B. Block, S. Liff, M. Kobrinsky, M. Reshotko, R. Tseng, I. Ban, P. Chang. A low power electro-optic polymer clad Mach-Zehnder modulator for high speed optical interconnects. Proc. SPIE, 8629, 86290Z(2013).

    [17] X. Dou, A. X. Wang, X. Lin, R. T. Chen. Photolithography-free polymer optical waveguide arrays for optical backplane bus. Opt. Express, 19, 14403-14410(2011).

    [18] R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibb-Brenner, J. Bristow, Y. S. Liu. Fully embedded board-level guided-wave optoelectronic interconnects. Proc. IEEE, 88, 780-793(2000).

    [19] R. T. Chen, W. Phillips, T. Jannson, D. Pelka. Integration of holographic optical elements with polymer gelatin waveguides on GaAs, LiNbO3, glass, and aluminum. Opt. Lett., 14, 892-894(1989).

    [20] R. T. Chen, L. Wu, F. Li, S. Tang, M. Dubinovsky, J. Qi, C. L. Schow, J. C. Campbell, R. Wickman, B. Picor, M. Hibbs-Brenner, J. Bristow, Y. S. Liu, S. Rattan, C. Noddings. Si CMOS process compatible guided-wave multi-GBit/sec optical clock signal distribution system for Cray T-90 supercomputer. Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections, 10-24(1997).

    [21] S. Natarajan, C. Zhao, R. T. Chen. Bi-directional optical backplane bus for general purpose multi-processor board-to-board optoelectronic interconnects. J. Lightwave Technol., 13, 1031-1040(1995).

    [22] X. Lin, T. Ling, H. Subbaraman, X. Zhang, K. Byun, L. J. Guo, R. T. Chen. Ultraviolet imprinting and aligned ink-jet printing for multilayer patterning of electro-optic polymer modulators. Opt. Lett., 38, 1597-1599(2013).

    [23] X. Zhang, B. Lee, C.-Y. Lin, A. X. Wang, A. Hosseini, R. T. Chen. Highly linear broadband optical modulator based on electro-optic polymer. IEEE Photon. J., 4, 2214-2228(2012).

    [24] L. R. Dalton. Electro-optic polymer modulators. Broadband Optical Modulators: Science, Technology, and Applications, 223-256(2011).

    [25] D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, Y. Shi. Demonstration of 110  GHz electro-optic polymer modulators. Appl. Phys. Lett., 70, 3335-3337(1997).

    [26] J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, Z. Zhen. Recent advances in polymer electro-optic modulators. RSC Adv., 5, 15784-15794(2015).

    [27] X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K. Y. Jen, R. T. Chen. Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator. J. Lightwave Technol., 32, 3774-3784(2014).

    [28] C.-Y. Lin, A. X. Wang, B. S. Lee, X. Zhang, R. T. Chen. High dynamic range electric field sensor for electromagnetic pulse detection. Opt. Express, 19, 17372-17377(2011).

    [29] S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, L. J. Guo. Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite. Nat. Photonics, 8, 537-542(2014).

    [30] C. Zhang, T. Ling, S.-L. Chen, L. J. Guo. Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging. ACS Photon., 1, 1093-1098(2014).

    [31] C. Zhang, S. Chen, T. Ling, L. Jay Guo. Review of imprinted polymer microrings as ultrasound detectors: design, fabrication, and characterization. IEEE Sens. J., 15, 3241-3248(2015).

    [32] C. Zhang, S.-L. Chen, T. Ling, L. J. Guo. Imprinted polymer microrings as high performance ultrasound detectors in photoacoustic imaging. J. Lightwave Technol., 33, 4318-4328(2015).

    [33] X. Lin, T. Ling, H. Subbaraman, L. J. Guo, R. T. Chen. Printable thermo-optic polymer switches utilizing imprinting and ink-jet printing. Opt. Express, 21, 2110-2117(2013).

    [34] R. Waldhäusl, B. Schnabel, P. Dannberg, E.-B. Kley, A. Bräuer, W. Karthe. Efficient coupling into polymer waveguides by gratings. Appl. Opt., 36, 9383-9390(1997).

    [35] R. Bruck, R. Hainberger. Efficiency enhancement of grating couplers for single-mode polymer waveguides through high index coatings. Proceedings 14th European Conference on Integrated Optics, 201-204(2008).

    [36] R. Bruck, R. Hainberger. Efficient small grating couplers for low-index difference waveguide systems. Proc. SPIE, 7218, 72180A(2009).

    [37] L. Wang, Y. Li, M. Garcia Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, G. Morthier. A polymer-based surface grating coupler with an embedded Si3N4 layer. J. Appl. Phys., 111, 114507(2012).

    [38] M. E. Pollard, S. J. Pearce, R. Chen, S. Oo, M. D. B. Charlton. Polymer waveguide grating couplers for low-cost nanoimprinted integrated optics. Proc. SPIE, 8264, 826418(2012).

    [39] Z. Zhang, A. Maese-Novo, E. Schwartz, C. Zawadzki, N. Keil. 301-nm wavelength tunable differentially driven all-polymer optical filter. Opt. Lett., 39, 5170-5172(2014).

    [40] Z. Pan, H. Subbaraman, Y. Zou, X. Zhang, C. Zhang, Q. Li, L. J. Guo, R. T. Chen. High optical coupling efficiency quasi-vertical taper for polymer waveguide devices. Proc. SPIE, 9368, 936808(2015).

    [41] Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, D. A. Ackerman. Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon. Appl. Phys. Lett., 55, 2389-2391(1989).

    [42] B. Mersali, A. Ramdane, A. Carenco. Optical-mode transformer: a III-V circuit integration enabler. IEEE J. Sel. Top. Quantum Electron., 3, 1321-1331(1998).

    [43] I. Moerman, P. P. Van Daele, P. M. Demeester. A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices. IEEE J. Sel. Top. Quantum Electron., 3, 1308-1320(1998).

    [44] T. T. Aalto, P. Heimala, S. Yliniemi, M. Kapulainen, M. J. Leppihalme. Fabrication and characterization of waveguide structures on SOI. Proc. SPIE, 4944, 183-194(2003).

    [45] I. E. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnston, S. Day, J. Luff, H. K. Tsang, M. Asghari. Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators. Optical Fiber Communication Conference, TuM5(2003).

    [46] R. J. Bozeat, S. Day, F. Hopper, F. Payne, S. Roberts, M. Asghari. Silicon based waveguides. Silicon Photonics, 269-294(2004).

    [47] T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, P. Heimala. Low-loss converters between optical silicon waveguides of different sizes and types. IEEE Photon. Technol. Lett., 18, 709-711(2006).

    [48] D. Dai, S. He, T. Hon-Ki. Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide. J. Lightwave Technol., 24, 5019-5024(2006).

    [49] J. K. Doylend, A. P. Knights. Design and simulation of an integrated fiber-to-chip coupler for silicon-on-insulator waveguides. IEEE J. Sel. Top. Quantum Electron., 12, 1363-1370(2006).

    [50] V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C.-Y. Hong, J. Yasaitis, L. C. Kimerling, J. Michel. Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems. Appl. Phys. Lett., 88, 081112(2006).

    [51] A. Barkai, A. Liu, D. Kim, R. Cohen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, N. Izhaky. Double-stage taper for coupling between SOI waveguides and single-mode fiber. J. Lightwave Technol., 26, 3860-3865(2008).

    [52] Q. Fang, T.-Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, D.-L. Kwong. Suspended optical fiber-to-waveguide mode size converter for silicon photonics. Opt. Express, 18, 7763-7769(2010).

    [53] Q. Huang, J. Cheng, L. Liu, Y. Tang, S. He. Ultracompact tapered coupler for the Si/III-V heterogeneous integration. Appl. Opt., 54, 4327-4332(2015).

    [54] H. Park, S. Kim, J. Park, J. Joo, G. Kim. A fiber-to-chip coupler based on Si/SiON cascaded tapers for Si photonic chips. Opt. Express, 21, 29313-29319(2013).

    [55] A. Khilo, M. A. Popović, M. Araghchini, F. X. Kärtner. Efficient planar fiber-to-chip coupler based on two-stage adiabatic evolution. Opt. Express, 18, 15790-15806(2010).

    [56] M. Wood, P. Sun, R. M. Reano. Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits. Opt. Express, 20, 164-172(2012).

    [57] M. Pu, L. Liu, H. Ou, K. Yvind, J. M. Hvam. Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide. Opt. Commun., 283, 3678-3682(2010).

    [58] T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, H. Morita. Low loss mode size converter from 0.3  μm square Si wire waveguides to single mode fibres. Electron. Lett., 38, 1669-1670(2002).

    [59] R. Orobtchouk. On chip optical waveguide interconnect: the problem of the in/out coupling. Optical Interconnects, 263-290(2006).

    [60] K. Kataoka. Estimation of coupling efficiency of optical fiber by far-field method. Opt. Rev., 17, 476-480(2010).

    [61] M. Sanghadasa, P. R. Ashley, E. L. Webster, C. Cocke, G. A. Lindsay, A. J. Guenthner. A simplified technique for efficient fiber-polymer-waveguide power coupling using a customized cladding with tunable index of refraction. J. Lightwave Technol., 24, 3816-3823(2006).

    Zeyu Pan, Harish Subbaraman, Yi Zou, Xiaochuan Xu, Xingyu Zhang, Cheng Zhang, Qiaochu Li, L. Jay Guo, Ray T. Chen. Quasi-vertical tapers for polymer-waveguide-based interboard optical interconnects[J]. Photonics Research, 2015, 3(6): 317
    Download Citation