• Journal of Semiconductors
  • Vol. 43, Issue 3, 032001 (2022)
Kunal B. Modi1, Pooja Y. Raval2, Dolly J. Parekh1, Shrey K. Modi3, Niketa P. Joshi1, Akshay R. Makadiya1, Nimish H. Vasoya4, and Utpal S. Joshi5
Author Affiliations
  • 1Department of Physics, Saurashtra University, Rajkot 360005, India
  • 2Department of Physics, C. U. Shah University, Wadhwan City, Surendranagar 363030, India
  • 3Department of Environment Engineering, L. D. Engineering College, Ahmedabad 380015, India
  • 4Department of Balbhavan, Children´s University, Sector – 20, Gandhinagar 382015, India
  • 5Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, India
  • show less
    DOI: 10.1088/1674-4926/43/3/032001 Cite this Article
    Kunal B. Modi, Pooja Y. Raval, Dolly J. Parekh, Shrey K. Modi, Niketa P. Joshi, Akshay R. Makadiya, Nimish H. Vasoya, Utpal S. Joshi. Fe3+-substitution effect on the thermal variation of J–E characteristics and DC resistivity of quadruple perovskite CaCu3Ti4O12[J]. Journal of Semiconductors, 2022, 43(3): 032001 Copy Citation Text show less
    References

    [1] M A Subramanian, D Li, N Duan et al. High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J Solid State Chem, 151, 323(2000).

    [2] A P Ramirez, M A Subramanian, M Gardel et al. Giant dielectric constant response in a copper-titanate. Solid State Commun, 115, 217(2000).

    [3] K Prompa, E Swatsitang, C Saiyasombat et al. Very high performance dielectric and non-Ohmics properties of CaCu3Ti4.2O12 ceramics for X8R capacitors. Ceram Int, 44, 13267(2018).

    [4] L C Kretly, A F L Almeida, R S de Oliveira et al. Electrical and optical properties of CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas. Microw Opt Technol Lett, 39, 145(2003).

    [5] S Y Chung, I D Kim, S J L Kang. Strong nonlinear current-voltage behaviour in perovskite-derivative calcium copper titanate. Nat Mater, 3, 774(2004).

    [6] A A Felix, J L M Rupp, J A Varela et al. Multi-functional propertiesof CaCu3Ti4O12 thin films. J Appl Phys, 112, 054512(2012).

    [7] H S Kushwaha, N A Madhar, B Ilahi et al. Efficient solar energy conversion using CaCu3Ti4O12 photoanode for photocatalysis and photoelectrocatalysis. Sci Rep, 6, 1(2016).

    [8] A Chhetry, S Sharma, H Yoon et al. Enhanced sensitivity of capacitive pressure and strain sensor based on CaCu3Ti4O12 wrapped hybrid sponge for wearable applications. Adv Funct Mater, 30, 1910020(2020).

    [9]

    [10] K Prompa, E Swatsitang, T Putjuso. Enhancement of nonlinear electrical properties with high performance dielectric properties of CaCu2.95Cr0.05Ti4.1O12 ceramics. Ceram Int, 44, S72(2018).

    [11] L L Ren, L J Yang, C Xu et al. Improvement of breakdown field and dielectric properties of CaCu3Ti4O12 ceramics by Bi and Al co-doping. J Alloys Compd, 768, 652(2018).

    [12] J Boonlakhorn, P Thongbai. Dielectric properties, nonlinear electrical response and microstructural evolution of CaCu3Ti4–xSnxO12 ceramics prepared by a double ball-milling process. Ceram Int, 46, 4952(2020).

    [13] J A Cortés, G Cotrim, S Orrego et al. Dielectric and non-ohmic properties of Ca2Cu2Ti4–xSnxO12 (0.0 ≤ x ≤ 4.0) multiphasic ceramic composites. J Alloys Compd, 735, 140(2018).

    [14] S Rhouma, S Saîd, C Autret et al. Comparative studies of pure, Sr-doped, Ni-doped and co-doped CaCu3Ti4O12 ceramics: Enhancement of dielectric properties. J Alloys Compd, 717, 121(2017).

    [15] S Wu, P Liu, Y M Lai et al. Effect of Ba2+ doping on microstructure and electric properties of calcium copper titanate (CaCu3Ti4O12) ceramics. J Mater Sci: Mater Electron, 27, 10336(2016).

    [16] N Barman, K B R Varma. Enhanced non-linear current-voltage response of Te-doped calcium copper titanate ceramics. Ceram Int, 43, 6363(2017).

    [17] E C Grzebielucka, J F H Leandro Monteiro, E C F de Souza et al. Improvement in varistor properties of CaCu3Ti4O12 ceramics by chromium addition. J Mater Sci Technol, 41, 12(2020).

    [18] J J Sun, C Xu, X T Zhao et al. Improved dielectric properties of indium and tantalum co-doped CaCu3Ti4O12 ceramic prepared by spark plasma sintering. IEEE Trans Dielectr Electr Insul, 27, 1400(2020).

    [19] C Sripakdee, K Prompa, E Swatsitang et al. Very high-performance dielectric and non-ohmic properties of novel X8R type Ca1–1.5xHoxCu3Ti4O12/TiO2 ceramics. J Alloys Compd, 779, 521(2019).

    [20] J Boonlakhorn, N Chanlek, J Manyam et al. Enhanced giant dielectric properties and improved nonlinear electrical response in acceptor-donor (Al3+, Ta5+)-substituted CaCu3Ti4O12 ceramics. J Adv Ceram, 10, 1243(2021).

    [21] R Löhnert, H Bartsch, R Schmidt et al. Microstructure and electric properties of CaCu3Ti4O12 multilayer capacitors. J Am Ceram Soc, 98, 141(2015).

    [22] Q Zheng, H Q Fan, C B Long. Microstructures and electrical responses of pure and chromium-doped CaCu3Ti4O12 ceramics. J Alloys Compd, 511, 90(2012).

    [23] S Amhil, E Choukri, S Ben Moumen et al. Evidence of large hopping polaron conduction process in strontium doped calcium copper titanate ceramics. Phys B, 556, 36(2019).

    [24] H Q Fan, Q Zheng, B L Peng. Microstructure, dielectric and pyroelectric properties of CaCu3Ti4O12 ceramics fabricated by tape-casting method. Mater Res Bull, 48, 3278(2013).

    [25] L Chen, C L Chen, Y Lin et al. High temperature electrical properties of highly epitaxial CaCu3Ti4O12 thin films on (001) LaAlO3. Appl Phys Lett, 82, 2317(2003).

    [26] P Y Raval, A R Makadiya, P R Pansara et al. Effect of thermal history on structural, microstructural properties and JE characteristics of CaCu3Ti4O12 polycrystalline ceramic. Mater Chem Phys, 212, 343(2018).

    [27] P R Pansara, P Y Raval, N H Vasoya et al. Intriguing structural and magnetic properties correlation study on Fe3+-substituted calcium-copper-titanate. Phys Chem Chem Phys, 20, 1914(2018).

    [28] P Y Raval, P R Pansara, N H Vasoya et al. Positron annihilation spectroscopic investigation of high energy ball - milling engendered defects in CaCu3Ti4O12. Ceram Int, 44, 15887(2018).

    [29] P R Pansara, U M Meshiya, A R Makadiya et al. Defect structure transformation during substitution in quadruple perovskite CaCu3–xTi4–xFe2xO12 studied by positron annihilation spectroscopy. Ceram Int, 45, 18599(2019).

    [30] P Y Raval, P R Pansara, A R Makadiya et al. Investigation on external stimuli engendered magnetic ordering in polycrystalline CaCu3Ti4O12 quadruple perovskite. Ceram Int, 44, 17667(2018).

    [31] U M Meshiya, P Y Raval, P R Pansara et al. Electronic structure, orbital symmetry transformation, charge transfer, and valence state studies on Fe3+-substituted CaCu3Ti4O12 quadruple perovskites using X-ray photoelectron spectroscopy. Ceram Int, 46, 2147(2020).

    [32] P Y Raval, P R Pansara, N H Vasoya et al. First observation of reversible mechanochromism and chromaticity study on calcium-copper-titanate. J Am Ceram Soc, 102, 6872(2019).

    [33] P Y Raval, N P Joshi, P R Pansara et al. A Ti L3, 2- and K- edge XANES and EXAFS study on Fe3+-substituted CaCu3Ti4O12. Ceram Int, 44, 20716(2018).

    [34] U M Meshiya, K K Jani, P L Mange et al. Defect characterization of slow-cooled and quenched samples of calcium-copper-titanate through positron annihilation spectroscopy. Spectrosc Lett, 52, 633(2019).

    [35] P R Pansara, P Y Raval, R Pandit et al. First experimental evidence of non-collinear spin structure in CaCu2.3Ti3.3Fe1.4O12. Ceram Int, 46, 10016(2020).

    [36] U M Meshiya, P Y Raval, N P Joshi et al. Probing Fano resonance, relaxor ferroelectricity, light scattering by orbital exchange-bond, orbitons by Raman spectroscopy, and their correlation with dielectric properties of pure and Fe3+ - substituted calcium-copper-titanate. Vib Spectrosc, 112, 103201(2021).

    [37] P Y Raval, P R Pansara, C L Chen et al. Probing reversal of orbital symmetry in CaCu3–xTi4–xFe2xO12 (x = 0.0–0.7) by X-ray absorption spectroscopy. J Mater Sci: Mater Electron, 32, 13630(2021).

    [38] K B Modi, N H Vasoya, T K Pathak et al. Observation of CCNR-type electrical switching in Zn0.3Mn0.7+xSixFe2−2xO4 spinel ferrite series. SN Appl Sci, 2, 1840(2020).

    [39] W Hu, N Qin, G H Wu et al. Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances. J Am Chem Soc, 134, 14658(2012).

    [40] P Zheng, R Z Zhang, H Y Chen et al. Thermoelectric properties and conduction mechanism of CaCu3Ti4O12 ceramics at high temperatures. J Electron Mater, 43, 1645(2014).

    [41] S Y Chung, J H Choi, J K Choi. Tunable current-voltage characteristics in polycrystalline calcium copper titanate. Appl Phys Lett, 91, 091912(2007).

    [42] P Mao, J P Wang, S J Liu et al. Grain size effect on the dielectric and non-ohmic properties of CaCu3Ti4O12 ceramics prepared by the Sol-gel process. J Alloys Compd, 778, 625(2019).

    [43] X T Zhao, L L Ren, L J Yang et al. Structure and dielectric relaxations of CaCu3Ti4O12 ceramics by heat treatments in different atmospheres. IEEE Trans Dielectr Electr Insul, 24, 764(2017).

    [44] T Li, H F He, T Zhang et al. Effect of synthesizing temperatures on the microstructure and electrical property of CaCu3Ti4O12ceramics prepared by sol-gel process. J Alloys Compd, 684, 315(2016).

    [45]

    [46] S Kaur, A Kumar, A L Sharma et al. Dielectric and energy storage behavior of CaCu3Ti4O12 nanoparticles for capacitor application. Ceram Int, 45, 7743(2019).

    [47] Z Tang, K N Wu, Y W Huang et al. High breakdown field CaCu3Ti4O12 ceramics: Roles of the secondary phase and of Sr doping. Energies, 10, 1031(2017).

    [48] H Lin, X He, Y Y Gong et al. Tuning the nonlinear current-voltage behavior of CaCu3Ti4O12 ceramics by spark plasma sintering. Ceram Int, 44, 8650(2018).

    [49] J Boonlakhorn, B Putasaeng, P Kidkhunthod et al. Improved dielectric properties of (Y + Mg) co-doped CaCu3Ti4O12 ceramics by controlling geometric and intrinsic properties of grain boundaries. Mater Des, 92, 494(2016).

    [50] E Swatsitang, T Putjuso. Very low loss tangent, high dielectric and non-ohmic properties of Ca1−1.5xPrxCu3Ti4O12 ceramics prepared by the sol-gel process. J Mater Sci: Mater Electron, 28, 18966(2017).

    [51] D Xu, X N Yue, J Song et al. Improved dielectric and non-ohmic properties of (Zn + Zr) codoped CaCu3Ti4O12 thin films. Ceram Int, 45, 11421(2019).

    [52] P Mao, J P Wang, L X Zhang et al. Significantly enhanced breakdown field with high grain boundary resistance and dielectric response in 0.1Na0.5Bi0.5TiO3-0.9BaTiO3 doped CaCu3Ti4O12 ceramics. J Eur Ceram Soc, 40, 3011(2020).

    [53] G Z Zang, J L Zhang, P Zheng et al. Grain boundary effect on the dielectric properties of CaCu3Ti4O12ceramics. J Phys D, 38, 1824(2005).

    [54] Y M Huang, D P Shi, Y H Li et al. Effect of holding time on the dielectric properties and non-ohmic behavior of CaCu3Ti4O12 capacitor-varistors. J Mater Sci: Mater Electron, 24, 1994(2013).

    [55] M Xiao, K Y Wang, X Q Chenyang et al. Nonlinear current-voltage behavior of CaCu3Ti4O12 thin films derived from Sol-gel method. J Mater Sci: Mater Electron, 25, 2710(2014).

    [56] A A Felix, M O Orlandi, J A Varela. Schottky-type grain boundaries in CCTO ceramics. Solid State Commun, 151, 1377(2011).

    [57]

    [58] K A L Abdullah, M D Termanini, F A Omar. Effect of impurities and temperature on electrical properties of ZnO-based varistors. Energy Procedia, 18, 867(2012).

    [59] H W Russell. Principles of heat flow in porous insulators. J Am Ceram Soc, 18, 1(1935).

    [60] A Onodera, M Takesada, K Kawatani et al. Dielectric properties and phase transition in CaCu3Ti4O12 at high temperatures. Jpn J Appl Phys, 47, 7753(2008).

    [61] M V Gorev, I N Flerov, A V Kartashev et al. Investigation of the thermal expansion and heat capacity of the CaCu3Ti4O12 ceramics. Phys Solid State, 54, 1785(2012).

    [62] V K Lakhani, K B Modi. Effect of Al3+ substitution on the transport properties of copper ferrite. J Phys D, 44, 245403(2011).

    Kunal B. Modi, Pooja Y. Raval, Dolly J. Parekh, Shrey K. Modi, Niketa P. Joshi, Akshay R. Makadiya, Nimish H. Vasoya, Utpal S. Joshi. Fe3+-substitution effect on the thermal variation of J–E characteristics and DC resistivity of quadruple perovskite CaCu3Ti4O12[J]. Journal of Semiconductors, 2022, 43(3): 032001
    Download Citation