• Journal of Semiconductors
  • Vol. 42, Issue 2, 023104 (2021)
Min Tan1、2, Kaixuan Ye1, Da Ming1, Yuhang Wang1, Zhicheng Wang1, Li Jin3, and Junbo Feng3
Author Affiliations
  • 1School of Electronic and Optical Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Wuhan National Laboratory of Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 3United Microelectronics Center, Chongqing 400030, China
  • show less
    DOI: 10.1088/1674-4926/42/2/023104 Cite this Article
    Min Tan, Kaixuan Ye, Da Ming, Yuhang Wang, Zhicheng Wang, Li Jin, Junbo Feng. Towards electronic-photonic-converged thermo-optic feedback tuning[J]. Journal of Semiconductors, 2021, 42(2): 023104 Copy Citation Text show less
    References

    [1] G Z Mashanovich. Electronics and photonics united. Nature, 556, 316(2018).

    [2] M Tan, D Ming, Z C Wang. From photonic integration to electronic-photonic heterogeneously-converging integrated circuits: A case study of wavelength locking of microrings. Micro/nano Electronics and Intelligent Manufacturing, 1, 40(2019).

    [3] Y Shen, N C Harris, S Skirlo et al. Deep learning with coherent nanophotonic circuits. Nat Photonics, 11, 441(2017).

    [4] S Chung, H Abediasl, H Hashemi. A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS. IEEE J Solid-State Circuits, 53, 275(2018).

    [5] J Wang, S Paesani, Y Ding et al. Multidimensional quantum entanglement with large-scale integrated optics. Science, 360, 285(2018).

    [6] A Malik, S Dwivedi, L V Landschoot et al. Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared. Opt Express, 22, 28479(2014).

    [7] Y Hashizume, e S Katayose, a T Tsuchizawa et al. Low-power silicon thermo-optic switch with folded waveguide arms and suspended ridge structures. Electron Lett, 48, 1234(2012).

    [8] H Qiu, Y Liu, C Luan et al. Energy-efficient thermo-optic silicon phase shifter with well-balanced overall performance. Opt Lett, 45, 4806(2020).

    [9] S A Miller, Y C Chang, C T Phare et al. Large-scale optical phased array using a low-power multi-pass silicon photonic platform. Optica, 7, 3(2020).

    [10] M R Watts, J Sun, C DeRose et al. Adiabatic thermo-optic Mach-Zehnder switch. Opt Lett, 38, 733(2013).

    [11] J V Campenhout, W M J Green, S Assefa et al. Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices. Opt Lett, 35, 1013(2010).

    [12] Q Fang, J F Song, T Liow et al. Ultralow power silicon photonics thermo-optic switch with suspended phase arms. IEEE Photon Technol Lett, 23, 525(2011).

    [13] S Chung, M Nakai, H Hashemi. Low-power thermo-optic silicon modulator for large-scale photonic integrated systems. Opt Express, 27, 13430(2019).

    [14] M Jacques, A Samani, E El-Fiky et al. Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform. Opt Express, 27, 10456(2019).

    [15] R Baets, R Baets, A Z Subramanian et al. Silicon photonics: Silicon nitride versus silicon-on-insulator. Optical Fiber Communication Conference, Th3J.1(2016).

    [16] Y Chen, J Whitehead, A Ryou et al. A large thermal tuning of a polymer-embedded silicon nitride nanobeam cavity. Opt Lett, 44, 3058(2019).

    [17] J F Bauters, M J R Heck, D John et al. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt Express, 19, 3163(2011).

    [18] E S Hosseini, S Yegnanarayanan, A H Atabaki et al. A high quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range. Opt Express, 17, 14543(2009).

    [19] Y Sun, Y Cao, Q Wang et al. Polymer thermal optical switch for a flexible photonic circuit. Appl Opt, 57, 14(2018).

    [20] Y F Liu, X B Wang, J W Sun et al. Improved performance of thermal-optic switch using polymer/silica hybrid and air trench waveguide structures. Opt Lett, 40, 1888(2015).

    [21]

    [22]

    [23] M Bahadori, A Gazman, N Janosik et al. Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform. J Light Technol, 36, 773(2018).

    [24] N Zecevic, M Hofbauer, H Zimmermann. Integrated pulsewidth modulation control for a scalable optical switch matrix. IEEE Photon J, 7, 1(2015).

    [25] Q Zhu, C Qiu, Y He et al. Self-homodyne wavelength locking of a silicon microring resonator. Opt Express, 27, 36625(2019).

    [26] R Gatdula, K Kim, A Melikyan et al. Simultaneous four-channel thermal adaptation of polarization insensitive silicon photonics WDM receiver. Opt Express, 25, 27119(2017).

    [27]

    [28] S Agarwal, M Ingels, M Pantouvaki et al. Wavelength locking of a Si ring modulator using an integrated drop-port OMA monitoring circuit. IEEE J Solid-State Circuits, 51, 2328(2016).

    [29] P Dong, R Gatdula, K Kim et al. Simultaneous wavelength locking of microring modulator array with a single monitoring signal. Opt Express, 25, 16040(2017).

    [30] M W AlTaha, H Jayatilleka, Z Lu et al. Monitoring and automatic tuning and stabilization of a 2 × 2 MZI optical switch for large-scale WDM switch networks. Opt Express, 27, 24747(2019).

    [31] S Saeedi, A Emami. Silicon-photonic PTAT temperature sensor for micro-ring resonator thermal stabilization. Opt Express, 23, 21875(2015).

    [32]

    [33]

    [34] H Jayatilleka, K Murray, M Á Guillén-Torres et al. Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters. Opt Express, 23, 25084(2015).

    [35] H Jayatilleka, H Shoman, R Boeck et al. Automatic configuration and wavelength locking of coupled silicon ring resonators. J Lightwave Technol, 36, 210(2018).

    [36] H Jayatilleka, H Shoman, L Chrostowski et al. High quantum efficiency photoconductive heaters enable control of large-scale silicon photonic ring resonator circuits. Optica, 6, 84(2019).

    [37] F Morichetti, S Grillanda, M Carminati et al. A non-invasive on-chip light observation by contactless waveguide conductivity monitoring. IEEE J Sel Top Quantum Electron, 20, 292(2014).

    [38] F Zanetto, V Grimaldi, M Moralis-Pegios et al. A WDM-based silicon photonic multi-socket interconnect architecture with automated wavelength and thermal drift compensation. J Lightwave Technol, 38, 6000(2020).

    [39] S Grillanda, M Carminati, F Morichetti et al. A non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica, 1, 129(2014).

    [40] Q Zhu, X Jiang, Y Yu et al. Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators. IEEE Photon J, 10, 1(2018).

    [41]

    [42] M Moralis-Pegios, S Pitris, T Alexoudi et al. 4-channel 200 Gb/s WDM O-band silicon photonic transceiver sub-assembly. Opt Express, 28, 5706(2020).

    [43] M H Kim, L Zimmermann, W Y Choi. A temperature controller IC for maximizing Si micro-ring modulator optical modulation amplitude. J Lightwave Technol, 37, 1200(2019).

    [44] C Li, R Bai, A Shafik et al. Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS. IEEE J Solid-State Circuits, 49, 1419(2014).

    [45] H Li, Z Xuan, A Titriku et al. A 25 Gb/s, 4.4 V-swing, AC-coupled ring modulator-based WDM transmitter with wavelength stabilization in 65 nm CMOS. IEEE J Solid-State Circuits, 50, 3145(2015).

    [46] C Sun, M Wade, M Georgas et al. A 45 nm CMOS-SOI monolithic photonics platform with bit-statistics-based resonant microring thermal tuning. IEEE J Solid-State Circuits, 51, 893(2016).

    [47] K Yu, C Li, H Li et al. A 25 Gb/s hybrid-integrated silicon photonic source-synchronous receiver with microring wavelength stabilization. IEEE J Solid-State Circuits, 51, 2129(2016).

    [48] K Padmaraju, D F Logan, T Shiraishi et al. Wavelength locking and thermally stabilizing microring resonators using dithering signals. J Light Technol, 32, 505(2014).

    [49] A Annoni, E Guglielmi, M Carminati et al. Automated routing and control of silicon photonic switch fabrics. IEEE J Sel Top Quantum Electron, 22, 169(2016).

    [50] L L Wang, T Kowalcyzk. A versatile bias control technique for any-point locking in lithium niobate Mach–Zehnder modulators. J Light Technol, 28, 1703(2010).

    [51]

    [52] J C C Mak, W D Sacher, T Xue et al. Automatic resonance alignment of high-order microring filters. IEEE J Quantum Electron, 51, 1(2015).

    [53] M Milanizadeh, D Aguiar, A Melloni et al. Canceling thermal cross-talk effects in photonic integrated circuits. J Light Technol, 37, 1325(2019).

    [54] M Milanizadeh, S Ahmadi, M Petrini et al. Control and calibration recipes for photonic integrated circuits. IEEE J Sel Top Quantum Electron, 26, 1(2020).

    [55]

    [56] K Padmaraju, D F Logan, X Zhu et al. Integrated thermal stabilization of a microring modulator. Opt Express, 21, 14342(2013).

    [57] H Li, G Balamurugan, T Kim, M N Sakib et al. A 3-D-integrated silicon photonic microring-based 112-Gb/s PAM-4 transmitter with nonlinear equalization and thermal control. IEEE J Solid-State Circuits, 1(2020).

    [58] P Amberg, E Chang, F Liu et al. A sub-400 fJ/bit thermal tuner for optical resonant ring modulators in 40 nm CMOS. IEEE Asian Solid State Circuits Conference (A-SSCC), 29(2012).

    [59]

    [60] H Nagata, K Kiuchi, T Saito. Studies of thermal drift as a source of output instabilities in Ti:LiNbO3 optical modulators. J Appl Phys, 75, 4762(1994).

    [61] E L Wooten, K M Kissa, A Yi-Yan et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quantum Electron, 6, 69(2000).

    [62] H Chen, B Zhang, W Ma et al. Study on auto bias control of a silicon optical modulator in a four-level pulse amplitude modulation format. Appl Opt, 58, 3986(2019).

    [63]

    [64]

    [65] Y Fu, X Zhang, B Hraimel et al. Mach-Zehnder: A review of bias control techniques for Mach-Zehnder modulators in photonic analog links. IEEE Microw Mag, 14, 102(2013).

    [66] M H Kim, H Y Jung, L Zimmermann. An integrated Mach-Zehnder modulator bias controller based on eye-amplitude monitoring. Smart Photonic and Optoelectronic Integrated Circuits XVIII, 9751, 97510X(2016).

    [67] M Kim, B Yu, W Choi. A Mach-Zehnder modulator bias controller based on OMA and average power monitoring. IEEE Photon Technol Lett, 29, 2043(2017).

    [68] T Barwicz, M R Watts, M A Popović et al. Polarization-transparent microphotonic devices in the strong confinement limit. Nat Photonics, 1, 57(2007).

    [69] J N Caspers, Y Wang, L Chrostowski et al. Active polarization independent coupling to silicon photonics circuit. Silicon Photonics and Photonic Integrated Circuits IV, 9133, 91330G(2014).

    [70] P Velha, V Sorianello, M V Preite et al. Wide-band polarization controller for Si photonic integrated circuits. Opt Lett, 41, 5656(2016).

    [71]

    [72] R Cao, Y He, Q Zhu et al. Multi-channel 28-GHz millimeter-wave signal generation on a silicon photonic chip with automated polarization control. J Semicond, 40, 052301(2019).

    [73] M Ma, H Shoman, K Tang et al. Automated control algorithms for silicon photonic polarization receiver. Opt Express, 28, 1885(2020).

    [74] M Ma, H Shoman, S Shekhar et al. Automated adaptation and stabilization of a tunable WDM polarization-independent receiver on active silicon photonic platform. IEEE Photon J, 12, 4900411(2020).

    [75] S Sun, M He, M Xu et al. Bias-drift-free Mach-Zehnder modulators based on heterogeneous silicon and lithium niobate platform. Photonics Res, 8, 1958(2020).

    [76] R Fatemi, A Khachaturian, A Hajimiri. A nonuniform sparse 2-D large-FOV optical phased array with a low-power PWM drive. IEEE J Solid-State Circuits, 54, 1200(2019).

    [77] T Kim, P Bhargava, C V Poulton et al. A single-chip optical phased array in a wafer-scale silicon photonics /CMOS 3D-integration platform. IEEE J Solid-State Circuits, 54, 3061(2019).

    [78] F Ashtiani, F Aflatouni. N x N optical phased array with 2N phase shifters. Opt Express, 27, 27183(2019).

    [79] F Ashtiani, F Aflatouni. Monolithic optical phased-array transceiver in a standard SOI CMOS process. Opt Express, 23, 6509(2015).

    [80] Q Zhang, L Zhang, Z Li et al. An antenna array initial condition calibration method for integrated optical phased array. Acta Photonica Sinica, 49, 726001(2020).

    [81] D Hutchisonetal, J Sun, J Doylend et al. High-resolution aliasing-free optical beam steering. Optica, 8, 887(2016).

    [82] H Zhang, Z Zhang, C Peng et al. Phase calibration of on-chip optical phased arrays via interference technique. IEEE Photon J, 12, 6600210(2020).

    [83] T Komljenovic, P Pintus. On-chip calibration and control of optical phased arrays. Opt Express, 26, 3199(2018).

    Min Tan, Kaixuan Ye, Da Ming, Yuhang Wang, Zhicheng Wang, Li Jin, Junbo Feng. Towards electronic-photonic-converged thermo-optic feedback tuning[J]. Journal of Semiconductors, 2021, 42(2): 023104
    Download Citation