• Acta Optica Sinica
  • Vol. 43, Issue 7, 0727001 (2023)
Wei Li1、*, Zhixue Wu1、2, Qingwei Wang1, Ruixin Li1, Qinghui Li1, Mingjian Ju1, Zichao Gao1, Xin Shang1, Long Tian1、3、**, and Yaohui Zheng1、3
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, Shanxi, China
  • 2College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, Shanxi, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi, China
  • show less
    DOI: 10.3788/AOS221918 Cite this Article Set citation alerts
    Wei Li, Zhixue Wu, Qingwei Wang, Ruixin Li, Qinghui Li, Mingjian Ju, Zichao Gao, Xin Shang, Long Tian, Yaohui Zheng. Integrated Resonant Photodetector with High Signal-to-Noise Ratio[J]. Acta Optica Sinica, 2023, 43(7): 0727001 Copy Citation Text show less
    References

    [1] Bílek J, Li B B, Hoff U B et al. Quantum-enhanced optomechanical magnetometry[J]. Optica, 5, 850-856(2018).

    [2] Wolfgramm F, Cerè A, Beduini F A et al. Squeezed-light optical magnetometry[J]. Physical Review Letters, 105, 053601(2010).

    [3] Eberle T, Steinlechner S, Bauchrowitz J et al. Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection[J]. Physical Review Letters, 104, 251102(2010).

    [4] Abadie J, Abbott B P, Abbott R et al. A gravitational wave observatory operating beyond the quantum shot-noise limit[J]. Nature Physics, 7, 962-965(2011).

    [5] Ma Y Q, Miao H X, Pang B H et al. Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement[J]. Nature Physics, 13, 776-780(2017).

    [6] Schnabel R, Mavalvala N, McClelland D E et al. Quantum metrology for gravitational wave astronomy[J]. Nature Communications, 1, 121(2010).

    [7] Luo J, Chen L S, Duan H Z et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 33, 035010(2016).

    [8] Sun X C, Wang Y J, Tian Y H et al. Deterministic and universal quantum squeezing gate with a teleportation-like protocol[J]. Laser & Photonics Reviews, 16, 2100329(2022).

    [9] Xia Y, Li W, Clark W et al. Demonstration of a reconfigurable entangled radio-frequency photonic sensor network[J]. Physical Review Letters, 124, 150502(2020).

    [10] Guo X S, Breum C R, Borregaard J et al. Distributed quantum sensing in a continuous-variable entangled network[J]. Nature Physics, 16, 281-284(2020).

    [11] Ge W C, Jacobs K, Eldredge Z et al. Distributed quantum metrology with linear networks and separable inputs[J]. Physical Review Letters, 121, 043604(2018).

    [12] Vahlbruch H, Mehmet M, Chelkowski S et al. Observation of squeezed light with 10-dB quantum-noise reduction[J]. Physical Review Letters, 100, 033602(2008).

    [13] Wu L A, Xiao M, Kimble H J. Squeezed states of light from an optical parametric oscillator[J]. Journal of the Optical Society of America B, 4, 1465-1475(1987).

    [14] Takeno Y, Yukawa M, Yonezawa H et al. Observation of-9 dB quadrature squeezing with improvement of phase stability in homodyne measurement[J]. Optics Express, 15, 4321-4327(2007).

    [15] Serikawa T, Yoshikawa J I, Makino K et al. Creation and measurement of broadband squeezed vacuum from a ring optical parametric oscillator[J]. Optics Express, 24, 28383-28391(2016).

    [16] Hao L P, Xue Y M, Fan J B et al. Precise measurement of a weak radio frequency electric field using a resonant atomic probe[J]. Chinese Physics B, 29, 033201(2020).

    [17] Vahlbruch H, Mehmet M, Danzmann K et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Physical Review Letters, 117, 110801(2016).

    [18] Yang W H, Shi S P, Wang Y J et al. Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations[J]. Optics Letters, 42, 4553-4556(2017).

    [19] Shi S P, Wang Y J, Yang W H et al. Detection and perfect fitting of 13.2 dB squeezed vacuum states by considering green-light-induced infrared absorption[J]. Optics Letters, 43, 5411-5414(2018).

    [20] Yao B, Chen Q F, Chen Y J et al. 280 mHz linewidth DBR fiber laser based on PDH frequency stabilization with ultrastable cavity[J]. Chinese Journal of Lasers, 48, 0501014(2021).

    [21] Yu J K, Chen H G, Zhang B et al. Dither-free quad-and null-bias point locking technique for Mach-Zehnder silicon optical modulator[J]. Acta Optica Sinica, 42, 2023003(2022).

    [22] Hu H F, Xu Y T, Li L et al. CuCr1-xMgxO2/ZnO nanorods UV photodetector prepared by Sol-gel method[J]. Acta Optica Sinica, 42, 1423001(2022).

    [23] He X A, Yi R Q, Li C G et al. Precise calibration and application of hard X-ray detectorin energy range of 10-100 keV[J]. Acta Optica Sinica, 42, 1134014(2022).

    [24] Chen M J, Wen L, Pan D H et al. Full-color nanorouter for high-resolution imaging[J]. Nanoscale, 13, 13024-13029(2021).

    [25] Narang P, Weiss P S. Quantum materials and devices at ACS Nano[J]. ACS Nano, 16, 15497-15498(2022).

    [26] Yang X G, Bao D H, Zhang Y et al. Single crossed heterojunction assembled with quantum-dot-embedded polyaniline nanowires[J]. ACS Photonics, 3, 1256-1264(2016).

    [27] Chen H Y, Liu H, Zhang Z M et al. Nanostructured photodetectors: from ultraviolet to terahertz[J]. Advanced Materials, 28, 403-433(2016).

    [28] Chen Q, Wen L, Yang X G et al. Structural color technology for high pixel density image sensors[J]. Acta Optica Sinica, 41, 0823010(2021).

    [29] Chen C Y, Li Z X, Jin X L et al. Resonant photodetector for cavity- and phase-locking of squeezed state generation[J]. Review of Scientific Instruments, 87, 103114(2016).

    [30] Serikawa T, Furusawa A. 500 MHz resonant photodetector for high-quantum-efficiency, low-noise homodyne measurement[J]. Review of Scientific Instruments, 89, 063120(2018).

    [31] Zhang H Y, Wang J R, Li Q H et al. Experimental realization of high quality factor resonance detector[J]. Journal of Quantum Optics, 25, 456-462(2019).

    [32] Uehara N, Gustafson E K, Fejer M M et al. Modeling of efficient mode-matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity[J]. Proceedings of SPIE, 2989, 57-68(1997).

    [33] Black E D. An introduction to Pound-Drever-Hall laser frequency stabilization[J]. American Journal of Physics, 69, 79-87(2001).

    [34] Li Z X, Sun X C, Wang Y J et al. Investigation of residual amplitude modulation in squeezed state generation system[J]. Optics Express, 26, 18957-18968(2018).

    [35] Grote H. High power, low-noise, and multiply resonant photodetector for interferometric gravitational wave detectors[J]. Review of Scientific Instruments, 78, 054704(2007).

    Wei Li, Zhixue Wu, Qingwei Wang, Ruixin Li, Qinghui Li, Mingjian Ju, Zichao Gao, Xin Shang, Long Tian, Yaohui Zheng. Integrated Resonant Photodetector with High Signal-to-Noise Ratio[J]. Acta Optica Sinica, 2023, 43(7): 0727001
    Download Citation