• Opto-Electronic Advances
  • Vol. 4, Issue 3, 200077-1 (2021)
Anir S. Sharbirin, Sophia Akhtar, and Jeongyong Kim*
Author Affiliations
  • Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
  • show less
    DOI: 10.29026/oea.2021.200077 Cite this Article
    Anir S. Sharbirin, Sophia Akhtar, Jeongyong Kim. Light-emitting MXene quantum dots[J]. Opto-Electronic Advances, 2021, 4(3): 200077-1 Copy Citation Text show less
    References

    [1] KS Novoselov, AK Geim, SV Morozov, D Jiang, Y Zhang et al. Electric field effect in atomically thin carbon films. Science, 306, 666-669(2004).

    [2] AK Geim, KS Novoselov. The rise of graphene. Nat Mater, 6, 183-191(2007).

    [3] SG Benka. Two-dimensional atomic crystals. Phys Today, 58, 9(2005).

    [4] KF Mak, C Lee, J Hone, J Shan, TF Heinz. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett, 105, 136805(2010).

    [5] RZ Ma, T Sasaki. Nanosheets of oxides and hydroxides: ultimate 2D charge-bearing functional crystallites. Adv Mater, 22, 5082-5104(2010).

    [6] QS Lv, FG Yan, X Wei, KY Wang. High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 heterojunction. Adv Opt Mater, 6, 1700490(2018).

    [7] QS Lv, FG Yan, N Mori, WK Zhu, C He et al. Interlayer band-to-band tunneling and negative differential resistance in van der Waals BP/InSe field-effect transistors. Adv Funct Mater, 30, 1910713(2020).

    [8] C Hu, D Zhang, FG Yan, YC Li, QS Lv et al. From two- to multi-state vertical spin valves without spacer layer based on Fe3GeTe2 van der Waals homo-junctions. Sci Bull, 65, 1072-1077(2020).

    [9] M Naguib, M Kurtoglu, V Presser, J Lu, JJ Niu, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater, 23, 4248-4253(2011).

    [10] K Hantanasirisakul, Y Gogotsi. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv Mater, 30, 1804779(2018).

    [11] M Naguib, VN Mochalin, MW Barsoum, Y Gogotsi. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater, 26, 992-1005(2014).

    [12] P Urbankowski, B Anasori, T Makaryan, DQ Er, S Kota et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 8, 11385-11391(2016).

    [13] T Zhang, LM Pan, H Tang, F Du, YH Guo et al. Synthesis of two-dimensional Ti3C2Tx MXene using HCl+LiF etchant: enhanced exfoliation and delamination. J Alloys Compd, 695, 818-826(2017).

    [14] B Soundiraraju, BK George. Two-dimensional titanium nitride (Ti2N) MXene: SYNTHESIS, characterization, and potential application as surface-enhanced raman scattering substrate. ACS Nano, 11, 8892-8900(2017).

    [15] M Naguib, RR Unocic, BL Armstrong, J Nanda. Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”. Dalton Trans, 44, 9353-9358(2015).

    [16] F Shahzad, M Alhabeb, CB Hatter, B Anasori, SM Hong et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353, 1137-1140(2016).

    [17] YF Dong, ZS Wu, SH Zheng, XH Wang, JQ Qin et al. Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano, 11, 4792-4800(2017).

    [18] QJ Yang, W GAO, W Zhong, ML Tao, YR Qi et al. A synergistic Bi2S3/MXene composite with enhanced performance as an anode material of sodium-ion batteries. New J Chem, 44, 3072-3077(2020).

    [19] RY Li, LB Zhang, L Shi, P Wang. MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano, 11, 3752-3759(2017).

    [20] K Chaudhuri, M Alhabeb, ZX Wang, VM Shalaev, Y Gogotsi et al. Highly broadband absorber using plasmonic titanium carbide (MXene). ACS Photonics, 5, 1115-1122(2018).

    [21] GB Ying, AD Dillon, AT Fafarman, MW Barsoum. Transparent, conductive solution processed spincast 2D Ti2CTx (MXene) films. Mater Res Lett, 5, 391-398(2017).

    [22] H An, T Habib, S Shah, HL Gao, M Radovic et al. Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Sci Adv, 4, eaaq0118(2018).

    [23] XT Jiang, AV Kuklin, A Baev, YQ Ge, H Ågren et al. Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications. Phys Rep, 848, 1-58(2020).

    [24] YH Xu, XX Wang, WL Zhang, F Lv, SJ Guo. Recent progress in two-dimensional inorganic quantum dots. Chem Soc Rev, 47, 586-625(2018).

    [25] ZP Zhang, J Zhang, N Chen, LT Qu. Graphenequantum dots: an emerging material for energy-related applications and beyond. Energy Environ Sci, 5, 8869-8890(2012).

    [26] SJ Xu, D Li, PY Wu. One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv Funct Mater, 25, 1127-1136(2015).

    [27] JM Huang, DF Kelley. Synthesis and characterization of MoSe2 and WSe2 nanoclusters. Chem Mater, 12, 2825-2828(2000).

    [28] BB Huo, BP Liu, T Chen, L Cui, GF Xu et al. One-step synthesis of fluorescent boron nitride quantum dots via a hydrothermal strategy using melamine as nitrogen source for the detection of ferric ions. Langmuir, 33, 10673-10678(2017).

    [29] Q Xue, HJ Zhang, MS Zhu, ZX Pei, HF Li et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv Mater, 29, 1604847(2017).

    [30] Q Xu, WJ Yang, YY Wen, SK Liu, Z Liu et al. Hydrochromic full-color MXene quantum dots through hydrogen bonding toward ultrahigh-efficiency white light-emitting diodes. Appl Mater Today, 16, 90-101(2019).

    [31] JD Shao, J Zhang, C Jiang, J Lin, P Huang. Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chem Eng J, 400, 126009(2020).

    [32] BB Shao, ZF Liu, GM Zeng, H Wang, QH Liang et al. Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects. J Mater Chem A, 8, 7508-7535(2020).

    [33] ZQ Wang, JN Xuan, ZG Zhao, QW Li, FX Geng. Versatile cutting method for producing fluorescent ultrasmall MXene sheets. ACS Nano, 11, 11559-11565(2017).

    [34] Q Xu, L Ding, YY Wen, WJ Yang, HK Zhou et al. High photoluminescence quantum yield of 18.7% by using nitrogen-doped Ti3C2 MXene quantum dots. J Mater Chem C, 6, 6360-6369(2018).

    [35] QW Guan, JF Ma, WJ Yang, R Zhang, XJ Zhang et al. Highly fluorescent Ti3C2 MXene quantum dots for macrophage labeling and Cu2+ ion sensing. Nanoscale, 11, 14123-14133(2019).

    [36] SY Lu, LZ Sui, Y Liu, X Yong, GJ Xiao et al. White photoluminescent Ti3C2 MXene quantum dots with two-photon fluorescence. Adv Sci, 6, 1801470(2019).

    [37] DP Huang, Y Xie, DZ Lu, ZY Wang, JY Wang et al. Demonstration of a white laser with V2C MXene-based quantum dots. Adv Mater, 31, 1901117(2019).

    [38] GH Yang, JL Zhao, SZ Yi, XJ Wan, JN Tang. Biodegradable and photostable Nb2C MXene quantum dots as promising nanofluorophores for metal ions sensing and fluorescence imaging. Sens Actuators B Chem, 309, 127735(2020).

    [39] ZM Liu, ED Wu, JM Wang, YH Qian, HM Xiang et al. Crystal structure and formation mechanism of (Cr2/3Ti1/3)3AlC2 MAX phase. Acta Mater, 73, 186-193(2014).

    [40] CF Zhang, YL Ma, XT Zhang, S Abdolhosseinzadeh, HW Sheng et al. Two‐dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. Energy Environ Mater, 3, 29-55(2020).

    [41] MA Pietzka, JC Schuster. Summary of constitutional data on the aluminum-carbon-titanium system. J Phase Equilibria, 15, 392-400(1994).

    [42] HV Atkinson, S Davies. Fundamental aspects of hot isostatic pressing: an overview. Metall Mater Trans A, 31, 2981-3000(2000).

    [43] NV Tzenov, MW Barsoum. Synthesis and characterization of Ti3AlC2. J Am Ceram Soc, 83, 825-832(2000).

    [44] XH Wang, YC Zhou. Oxidation behavior of Ti3AlC2 at 1000–1400°C in air. Corros Sci, 45, 891-907(2003).

    [45] CE Shuck, MK Han, K Maleski, K Hantanasirisakul, SJ Kim et al. Effect of Ti3AlC2 MAX phase on structure and properties of resultant Ti3C2Tx MXene. ACS Appl Nano Mater, 2, 3368-3376(2019).

    [46] M Naguib, J Halim, J Lu, KM Cook, L Hultman et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-Ion batteries. J Am Chem Soc, 135, 15966-15969(2013).

    [47] JC Schuster, H Nowotny. Investigations of the ternary systems (Zr, Hf, Nb, Ta)-Al-C and studies on complex carbides. Z Metallkd, 71, 341-346(1980).

    [48] ID Kovalev, PA Miloserdov, VA Gorshkov, DY Kovalev. Synthesis of Nb2AlC MAX phase by SHS metallurgy. Russ J Non-Ferrous Met, 61, 126-131(2020).

    [49] I Salama, T El-Raghy, MW Barsoum. Synthesis and mechanical properties of Nb2AlC and (Ti,Nb)2AlC. J Alloys Compd, 347, 271-278(2002).

    [50] W Zhang, N Travitzky, C Hu, Y Zhou, P Greil. Reactive hot pressing and properties of Nb2AlC. J. Am. Ceram. Soc, 92, 2396-2399(2009).

    [51] WB Zhou, K Li, JQ Zhu, SQ Tian. Rapid synthesis of highly pure Nb2AlC using the spark plasma sintering technique. J Phys Chem Solids, 120, 218-222(2018).

    [52] M Alhabeb, K Maleski, B Anasori, P Lelyukh, L Clark et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater, 29, 7633-7644(2017).

    [53] L Wang, WQ Tao, LY Yuan, ZR Liu, Q Huang et al. Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chem Commun, 53, 12084-12087(2017).

    [54] JB Pang, RG Mendes, A Bachmatiuk, L Zhao, HQ Ta et al. Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev, 48, 72-133(2019).

    [55] A Lipatov, M Alhabeb, MR Lukatskaya, A Boson, Y Gogotsi et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv Electron Mater, 2, 1600255(2016).

    [56] CF Zhang, YY Cui, L Song, XF Liu, ZB Hu. Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta, 150, 54-60(2016).

    [57] Z Li, P Qin, L Wang, CS Yang, YF Li et al. Amine-enriched graphene quantum dots for high-pseudocapacitance supercapacitors. Electrochim Acta, 208, 260-266(2016).

    [58] RJ Feng, WY Lei, XY Sui, XF Liu, XY Qi et al. Anchoring black phosphorus quantum dots on molybdenum disulfide nanosheets: a 0D/2D nanohybrid with enhanced visible−and NIR −light photoactivity. Appl Catal B Environ, 238, 444-453(2018).

    [59] GS Li, ZC Lian, WC Wang, DQ Zhang, HX Li. Nanotube-confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis. Nano Energy, 19, 446-454(2016).

    [60] XW Wang, GZ Sun, N Li, P Chen. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem Soc Rev, 45, 2239-2262(2016).

    [61] Q Xu, JF Ma, W Khan, XB Zeng, N Li et al. Highly green fluorescent Nb2C MXene quantum dots. Chem Commun, 56, 6648-6651(2020).

    [62] YF Feng, FR Zhou, QH Deng, C Peng. Solvothermal synthesis of in situ nitrogen-doped Ti3C2 MXene fluorescent quantum dots for selective Cu2+ detection. Ceram Int, 46, 8320-8327(2020).

    [63] XH Yu, XK Cai, HD Cui, SW Lee, XF Yu et al. Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale, 9, 17859-17864(2017).

    [64] P Pandey, A Sengupta, S Parmar, U Bansode, S Gosavi et al. CsPbBr3-Ti3C2Tx MXene QD/QD heterojunction: photoluminescence quenching, charge transfer, and Cd ion sensing application. ACS Appl Nano Mater, 3, 3305-3314(2020).

    [65] YL Qin, ZQ Wang, NY Liu, Y Sun, DX Han et al. High-yield fabrication of Ti3C2Tx MXene quantum dots and their electrochemiluminescence behavior. Nanoscale, 10, 14000-14004(2018).

    [66] YJ Li, L Ding, YC Guo, ZQ Liang, HZ Cui et al. Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots. ACS Appl Mater Interfaces, 11, 41440-41447(2019).

    [67] Handbook of Nanoparticles (Cham, Springer, 2015); http://doi.org/10.1007/978-3-319-15338-4.

    [68] Y Cao, TT Wu, K Zhang, XD Meng, WH Dai et al. Engineered exosome-mediated near-infrared-ii region V2C quantum dot delivery for nucleus-target low-temperature photothermal therapy. ACS Nano, 13, 1499-1510(2019).

    [69] QH Liang, XJ Liu, GM Zeng, ZF Liu, L Tang et al. Surfactant-assisted synthesis of photocatalysts: mechanism, synthesis, recent advances and environmental application. Chem Eng J, 372, 429-451(2019).

    [70] GG Xu, YS Niu, XC Yang, ZY Jin, Y Wang et al. Preparation of Ti3C2Tx mxene-derived quantum dots with white/blue-emitting photoluminescence and electrochemiluminescence. Adv Opt Mater, 6, 1800951(2018).

    [71] YH Xu, ZT Wang, ZN Guo, H Huang, QL Xiao et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots. Adv Opt Mater, 4, 1223-1229(2016).

    [72] R Tomita, Y Yasu, T Koike, M Akita. Combining photoredox-catalyzed trifluoromethylation and oxidation with DMSO: facile synthesis of α-trifluoromethylated ketones from aromatic alkenes. Angew Chem Int Ed, 53, 7144-7148(2014).

    [73] MC Chang, SA Chen. Kinetics and mechanism of urethane reactions: phenyl isocyanate–alcohol systems. J Polym Sci Part A Polym Chem, 25, 2543-2559(1987).

    [74] ZP Zeng, YB Yan, J Chen, P Zan, QH Tian et al. Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots. Adv Funct Mater, 29, 1806500(2019).

    [75] L Zhou, FM Wu, JH Yu, QH Deng, FA Zhang et al. Titanium carbide (Ti3C2Tx) MXene: a novel precursor to amphiphilic carbide-derived graphene quantum dots for fluorescent ink, light-emitting composite and bioimaging. Carbon, 118, 50-57(2017).

    [76] HX Xu, BW Zeiger, KS Suslick. Sonochemical synthesis of nanomaterials. Chem Soc Rev, 42, 2555-2567(2013).

    [77] M Malaki, A Maleki, RS Varma. MXenes and ultrasonication. J Mater Chem A, 7, 10843-10857(2019).

    [78] Soquetta Bromberger, S Schmaltz, Righes Wesz, R Salvalaggio, Marsillac de. Effects of pretreatment ultrasound bath and ultrasonic probe, in osmotic dehydration, in the kinetics of oven drying and the physicochemical properties of beet snacks. J Food Process Preserv, 42, e13393(2018).

    [79] R Mazzeo. Editorial. Top Curr Chem, 375, 1-36(2017).

    [80] WH Dai, HF Dong, XJ Zhang. A semimetal-like molybdenum carbide quantum dots photoacoustic imaging and photothermal agent with high photothermal conversion efficiency. Materials (Basel), 11, 1776(2018).

    [81] TR Zhang, X Jiang, GC Li, QF Yao, JY Lee. A red-phosphorous-assisted ball-milling synthesis of few-layered Ti3C2Tx (MXene) nanodot composite. ChemNanoMat, 4, 56-60(2018).

    [82] H Cheng, LX Ding, GF Chen, LL Zhang, J Xue et al. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv Mater, 30, 1803694(2018).

    [83] YH Wang, CL Li, XJ Han, DW Liu, HH Zhao et al. Ultrasmall Mo2C nanoparticle-decorated carbon polyhedrons for enhanced microwave absorption. ACS Appl Nano Mater, 1, 5366-5376(2018).

    [84] HL Liu, JC Zhu, ZH Lai, RD Zhao, D He. A first-principles study on structural and electronic properties of Mo2C. Scr Mater, 60, 949-952(2009).

    [85] Y Choi, B Kang, J Lee, S Kim, GT Kim et al. Integrative approach toward uncovering the origin of photoluminescence in dual heteroatom-doped carbon nanodots. Chem Mater, 28, 6840-6847(2016).

    [86] DY Pan, JC Zhang, Z Li, MH Wu. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater, 22, 734-738(2010).

    [87] S Liu, JQ Tian, L Wang, YW Zhang, XY Qin et al. Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv Mater, 24, 2037-2041(2012).

    [88] XM Li, MC Rui, JZ Song, ZH Shen, HB Zeng. Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv Funct Mater, 25, 4929-4947(2015).

    [89] M Soleymaniha, MA Shahbazi, AR Rafieerad, A Maleki, A Amiri. Promoting role of mxene nanosheets in biomedical sciences: therapeutic and biosensing innovations. Adv Healthc Mater, 8, 1801137(2019).

    [90] MA Sk, A Ananthanarayanan, L Huang, KH Lim, P Chen. Revealing the tunable photoluminescence properties of graphene quantum dots. J Mater Chem C, 2, 6954-6960(2014).

    [91] RE Bailey, S Nie. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc, 125, 7100-7106(2003).

    [92] XL Yang, QJ Jia, FH Duan, B Hu, MH Wang et al. Multiwall carbon nanotubes loaded with MoS2 quantum dots and MXene quantum dots: non–Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution. Appl Surf Sci, 464, 78-87(2019).

    [93] JH Peng, XZ Chen, WJ Ong, XJ Zhao, N Li. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis. Chem, 5, 18-50(2019).

    [94] X Chen, XK Sun, W Xu, CC Pan, DL Zhou et al. Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor. Nanoscale, 10, 1111-1118(2018).

    [95] MW Liu, J Zhou, Y He, ZX Cai, YL Ge et al. ε-Poly-L-lysine-protected Ti3C2 MXene quantum dots with high quantum yield for fluorometric determination of cytochrome c and trypsin. Microchim Acta, 186, 770(2019).

    [96] A Puzder, AJ Williamson, JC Grossman, G Galli. Surface chemistry of silicon nanoclusters. Phys Rev Lett, 88, 097401(2002).

    [97] IW Cho, MY Ryu. Effect of energy transfer on the optical properties of surface-passivated perovskite films with CdSe/ZnS quantum dots. Sci Rep, 9, 18433(2019).

    [98] EF Schubert, JK Kim. Solid-state light sources getting smart. Science, 308, 1274-1278(2005).

    [99] BZ Zhou, MJ Liu, YW Wen, Y Li, R Chen. Atomic layer deposition for quantum dots based devices. Opto-Electronic Adv, 3, 190043(2020).

    [100] ZW Yang, MY Gao, WJ Wu, XY Yang, XW Sun et al. Recent advances in quantum dot-based light-emitting devices: challenges and possible solutions. Mater Today, 24, 69-93(2019).

    [101] A Rafieerad, WA Yan, GL Sequiera, N Sareen, E Abu‐El‐Rub et al. Application of Ti3C2 MXene quantum dots for immunomodulation and regenerative medicine. Adv Healthc Mater, 8, 1900569(2019).

    [102] XW Zhu, Z Zhang, ZJ Xue, CH Huang, Y Shan et al. Understanding the selective detection of Fe3+ based on graphene quantum dots as fluorescent probes: the Ksp of a metal hydroxide-assisted mechanism. Anal Chem, 89, 12054-12058(2017).

    [103] A Hameed, A Azam. Sensing capability of fluorescent sodium salt of amoxicillin. Am J Nanomater, 1, 27-30(2013).

    [104] Q Xu, P Pu, JG Zhao, CB Dong, C Gao et al. Preparation of highly photoluminescent sulfur-doped carbon dots for Fe(III) detection. J Mater Chem A, 3, 542-546(2015).

    [105] P Wu, Y Li, XP Yan. CdTe quantum dots (QDs) based kinetic discrimination of Fe2+ and Fe3+, and CdTe QDs-fenton hybrid system for sensitive photoluminescent detection of Fe2+. Anal Chem, 81, 6252-6257(2009).

    [106] H Shah, Q Xin, XR Jia, JR Gong. Single precursor-based luminescent nitrogen-doped carbon dots and their application for iron (III) sensing. Arab J Chem, 12, 1083-1091(2019).

    [107] XL Dai, YZ Deng, XG Peng, YZ Jin. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization. Adv Mater, 29, 1607022(2017).

    [108] A Hoshino, Hanada, S, K Yamamoto. Toxicity of nanocrystal quantum dots: the relevance of surface modifications. Arch Toxicol, 85, 707-720(2011).

    [109] QX Zhang, Y Sun, ML Liu, Y Liu. Selective detection of Fe3+ ions based on fluorescence MXene quantum dots via a mechanism integrating electron transfer and inner filter effect. Nanoscale, 12, 1826-1832(2020).

    [110] ML Desai, H Basu, RK Singhal, S Saha, SK Kailasa. Ultra-small two dimensional MXene nanosheets for selective and sensitive fluorescence detection of Ag+ and Mn2+ ions. Colloids Surf A Physicochem Eng Asp, 565, 70-77(2019).

    [111] ZC Liang, M Kang, GF Payne, XH Wang, RC Sun. Probing energy and electron transfer mechanisms in fluorescence quenching of biomass carbon quantum dots. ACS Appl Mater Interfaces, 8, 17478-17488(2016).

    [112] Z Guo, XH Zhu, SG Wang, CY Lei, Y Huang et al. Fluorescent Ti3C2 MXene quantum dots for an alkaline phosphatase assay and embryonic stem cell identification based on the inner filter effect. Nanoscale, 10, 19579-19585(2018).

    [113] MW Liu, Y He, J Zhou, LL Ge, JG Zhou et al. A “naked-eye” colorimetric and ratiometric fluorescence probe for uric acid based on Ti3C2 MXene quantum dots. Anal Chim Acta, 1103, 134-142(2020).

    [114] SL Zhang, LW Liu, S Ren, ZL Li, YH Zhao et al. Recent advances in nonlinear optics for bio-imaging applications. Opto-Electronic Adv, 3, 200003(2020).

    [115] Jr Bruchez, M Moronne, P Gin, S Weiss, AP Alivisatos. Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 2013-2016(1998).

    [116] WCW Chan, SM Nie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 281, 2016-2018(1998).

    [117] KT Yong, WC Law, R Hu, L Ye, LW Liu et al. Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chem Soc Rev, 42, 1236-1250(2013).

    [118] K Rasool, M Helal, A Ali, CE Ren, Y Gogotsi et al. Antibacterial activity of Ti3C2Tx MXene. ACS Nano, 10, 3674-3684(2016).

    [119] L Yang, C Dall'Agnese, Y Dall'Agnese, G Chen, Y Gao et al. Surface-modified metallic Ti3C2Tx mxene as electron transport layer for planar heterojunction perovskite solar cells. Adv Funct Mater, 29, 1905694(2019).

    [120] HC Fu, V Ramalingam, H Kim, CH Lin, XS Fang et al. MXene-contacted silicon solar cells with 11.5% efficiency. Adv Energy Mater, 9, 1900180(2019).

    Anir S. Sharbirin, Sophia Akhtar, Jeongyong Kim. Light-emitting MXene quantum dots[J]. Opto-Electronic Advances, 2021, 4(3): 200077-1
    Download Citation