• Journal of Semiconductors
  • Vol. 43, Issue 2, 021801 (2022)
Chaoqun Dang1, Anliang Lu1, Heyi Wang1, Hongti Zhang2, and Yang Lu1、3、4
Author Affiliations
  • 1Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
  • 2School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 3Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
  • 4Nano-Manufacturing Laboratory (NML), Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
  • show less
    DOI: 10.1088/1674-4926/43/2/021801 Cite this Article
    Chaoqun Dang, Anliang Lu, Heyi Wang, Hongti Zhang, Yang Lu. Diamond semiconductor and elastic strain engineering[J]. Journal of Semiconductors, 2022, 43(2): 021801 Copy Citation Text show less
    References

    [1] A Jayaraman. Diamond anvil cell and high-pressure physical investigations. Rev Mod Phys, 55, 65(1983).

    [2] B Li, C Ji, W Yang et al. Diamond anvil cell behavior up to 4 Mbar. PNAS, 115, 1713(2018).

    [3] J Xia, J X Yan, Z H Wang et al. Strong coupling and pressure engineering in WSe2–MoSe2 heterobilayers. Nat Phys, 17, 92(2021).

    [4] P W May. The new diamond age. Science, 319, 1490(2008).

    [5] C J H Wort, R S Balmer. Diamond as an electronic material. Mater Today, 11, 22(2008).

    [6] I Aharonovich, A D Greentree, S Prawer. Diamond photonics. Nat Photonics, 5, 397(2011).

    [7] H Watanabe, C E Nebel, S Shikata. Isotopic homojunction band engineering from diamond. Science, 324, 1425(2009).

    [8] J Y Tsao, S Chowdhury, M A Hollis et al. Ultrawide-bandgap semiconductors: Research opportunities and challenges. Adv Electron Mater, 4, 1600501(2018).

    [9] J E Field. The properties of natural and synthetic diamond. Academic Press(1992).

    [10] J Isberg, J Hammersberg, E Johansson et al. High carrier mobility in single-crystal plasma-deposited diamond. Science, 297, 1670(2002).

    [11] M Schreck, J Asmussen, S Shikata et al. Large-area high-quality single crystal diamond. MRS Bull, 39, 504(2014).

    [12] I Friel, S L Clewes, H K Dhillon et al. Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition. Diam Relat Mater, 18, 808(2009).

    [13] A Tallaire, O Brinza, V Mille et al. Reduction of dislocations in single crystal diamond by lateral growth over a macroscopic hole. Adv Mater, 29, 1604823(2017).

    [14] Y J Lu, C N Lin, C X Shan. Optoelectronic diamond: Growth, properties, and photodetection applications. Adv Opt Mater, 6, 1800359(2018).

    [15] L Reggiani, S Bosi, C Canali et al. Hole-drift velocity in natural diamond. Phys Rev B, 23, 3050(1981).

    [16] G Perez, A Maréchal, G Chicot et al. Diamond semiconductor performances in power electronics applications. Diam Relat Mater, 110, 108154(2020).

    [17] K Miyata, D L Dreifus, K Kobashi. Metal-intrinsic semiconductor-semiconductor structures using polycrystalline diamond films. Appl Phys Lett, 60, 480(1992).

    [18] K Miyata, K Kobashi, D L Dreifus. Rectifying diodes with a metal/intrinsic semiconductor/semiconductor structure using polycrystalline diamond films. Diam Relat Mater, 2, 1107(1993).

    [19] M Brezeanu, S J Rashid, G A J Amaratunga et al. On-state behaviour of diamond M-i-P structures. 2006 International Semiconductor Conference, 311(2006).

    [20] P N Volpe, P Muret, J Pernot et al. Extreme dielectric strength in boron doped homoepitaxial diamond. Appl Phys Lett, 97, 223501(2010).

    [21] A Traoré, A Nakajima, T Makino et al. Reverse-recovery of diamond p-i-n diodes. IET Power Electron, 11, 695(2018).

    [22] A Traoré, P Muret, A Fiori et al. Zr/oxidized diamond interface for high power Schottky diodes. Appl Phys Lett, 104, 052105(2014).

    [23] V S Bormashov, S A Terentiev, S G Buga et al. Thin large area vertical Schottky barrier diamond diodes with low on-resistance made by ion-beam assisted lift-off technique. Diam Relat Mater, 75, 78(2017).

    [24] H Umezawa, S I Shikata, T Funaki. Diamond Schottky barrier diode for high-temperature, high-power, and fast switching applications. Jpn J Appl Phys, 53, 05FP06(2014).

    [25] T Shimaoka, H Umezawa, K Ichikawa et al. Ultrahigh conversion efficiency of betavoltaic cell using diamond pn junction. Appl Phys Lett, 117, 103902(2020).

    [26] Y T Lee, A Vardi, M Tordjman. A hybrid self-aligned MIS-MESFET architecture for improved diamond-based transistors. Appl Phys Lett, 117, 202101(2020).

    [27] F Maier, M Riedel, B Mantel et al. Origin of surface conductivity in diamond. Phys Rev Lett, 85, 3472(2000).

    [28] J L Liu, H Yu, S W Shao et al. Carrier mobility enhancement on the H-terminated diamond surface. Diam Relat Mater, 104, 107750(2020).

    [29] N J Yang, S Y Yu, J V MacPherson et al. Conductive diamond: Synthesis, properties, and electrochemical applications. Chem Soc Rev, 48, 157(2019).

    [30] M H Zhang, W Wang, G Q Chen et al. Electrical properties of yttrium gate hydrogen-terminated diamond field effect transistor with Al2O3 dielectric layer. Appl Phys Lett, 118, 053506(2021).

    [31] T Matsumoto, H Kato, K Oyama et al. Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics. Sci Rep, 6, 31585(2016).

    [32] C Masante, N Rouger, J Pernot. Recent progress in deep-depletion diamond metal–oxide–semiconductor field-effect transistors. J Phys D, 54, 233002(2021).

    [33] C Masante, J Pernot, A Maréchal et al. High temperature operation of a monolithic bidirectional diamond switch. Diam Relat Mater, 111, 108185(2021).

    [34] E Kohn, P Gluche, M Adamschik. Diamond MEMS—a new emerging technology. Diam Relat Mater, 8, 934(1999).

    [35] A V Sumant, O Auciello, R W Carpick et al. Ultrananocrystalline and nanocrystalline diamond thin films for MEMS/NEMS applications. MRS Bull, 35, 281(2010).

    [36] M Possas-Abreu, L Rousseau, F Ghassemi et al. Biomimetic diamond MEMS sensors based on odorant-binding proteins: Sensors validation through an autonomous electronic system. 2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), 1(2017).

    [37] M Y Liao, L W Sang, T Teraji et al. Ultrahigh performance on-chip single crystal diamond NEMS/MEMS with electrically tailored self-sensing enhancing actuation. Adv Mater Technol, 4, 1800325(2019).

    [38] M Y Liao. Progress in semiconductor diamond photodetectors and MEMS sensors. Funct Diam, 1, 29(2021).

    [39] O Auciello, D M Aslam. Review on advances in microcrystalline, nanocrystalline and ultrananocrystalline diamond films-based micro/nano-electromechanical systems technologies. J Mater Sci, 56, 7171(2021).

    [40] Y Tao, J M Boss, B A Moores et al. Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nat Commun, 5, 3638(2014).

    [41] P Rath, S Khasminskaya, C Nebel et al. Diamond-integrated optomechanical circuits. Nat Commun, 4, 1690(2013).

    [42] P Rath, S Ummethala, S Diewald et al. Diamond electro-optomechanical resonators integrated in nanophotonic circuits. Appl Phys Lett, 105, 251102(2014).

    [43] A Pályi, P R Struck, M Rudner et al. Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator. Phys Rev Lett, 108, 206811(2012).

    [44] I Wilson-Rae, P Zoller, A Imamoğlu. Laser cooling of a nanomechanical resonator mode to its quantum ground state. Phys Rev Lett, 92, 075507(2004).

    [45] J Teissier, A Barfuss, P Appel et al. Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. Phys Rev Lett, 113, 020503(2014).

    [46] A Barfuss, J Teissier, E Neu et al. Strong mechanical driving of a single electron spin. Nat Phys, 11, 820(2015).

    [47] J Riedrich-Möller, L Kipfstuhl, C Hepp et al. One- and two-dimensional photonic crystal microcavities in single crystal diamond. Nat Nanotechnol, 7, 69(2012).

    [48] P Rath, S Ummethala, C Nebel et al. Diamond as a material for monolithically integrated optical and optomechanical devices. Phys Status Solidi A, 212, 2385(2015).

    [49] D Rani, O Opaluch, E Neu. Recent advances in single crystal diamond device fabrication for photonics, sensing and nanomechanics. Micromachines, 12, 36(2020).

    [50] A H Piracha, P Rath, K Ganesan et al. Scalable fabrication of integrated nanophotonic circuits on arrays of thin single crystal diamond membrane windows. Nano Lett, 16, 3341(2016).

    [51] Y Tao, C Degen. Facile fabrication of single-crystal-diamond nanostructures with ultrahigh aspect ratio. Adv Mater, 25, 3962(2013).

    [52] N R Parikh, J D Hunn, E McGucken et al. Single-crystal diamond plate liftoff achieved by ion implantation and subsequent annealing. Appl Phys Lett, 61, 3124(1992).

    [53] B A Fairchild, P Olivero, S Rubanov et al. Fabrication of ultrathin single-crystal diamond membranes. Adv Mater, 20, 4793(2008).

    [54] M Y Liao, C Li, S Hishita et al. Batch production of single-crystal diamond bridges and cantilevers for microelectromechanical systems. J Micromech Microeng, 20, 085002(2010).

    [55] H A Atikian, P Latawiec, M J Burek et al. Freestanding nanostructures via reactive ion beam angled etching. APL Photonics, 2, 051301(2017).

    [56] I Bayn, S Mouradian, L Li et al. Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks. Appl Phys Lett, 105, 211101(2014).

    [57] M K Zalalutdinov, M P Ray, D M Photiadis et al. Ultrathin single crystal diamond nanomechanical dome resonators. Nano Lett, 11, 4304(2011).

    [58] W R McKenzie, M Z Quadir, M H Gass et al. Focused Ion beam implantation of diamond. Diam Relat Mater, 20, 1125(2011).

    [59] S Rubanov, A Suvorova. Ion implantation in diamond using 30 keV Ga+ focused ion beam. Diam Relat Mater, 20, 1160(2011).

    [60] Z Tong, X C Luo. Investigation of focused ion beam induced damage in single crystal diamond tools. Appl Surf Sci, 347, 727(2015).

    [61] I Bayn, A Bolker, C Cytermann et al. Diamond processing by focused ion beam—surface damage and recovery. Appl Phys Lett, 99, 183109(2011).

    [62] P Němec, J Preclíková, A Kromka et al. Ultrafast dynamics of photoexcited charge carriers in nanocrystalline diamond. Appl Phys Lett, 93, 083102(2008).

    [63] C Fang, Y W Zhang, Z F Zhang et al. Preparation of “natural” diamonds by HPHT annealing of synthetic diamonds. CrystEngComm, 20, 505(2018).

    [64] F P Bundy, H T Hall, H M Strong et al. Man-made diamonds. Nature, 176, 51(1955).

    [65] H T Hall. Sintered diamond: A synthetic carbonado. Science, 169, 868(1970).

    [66] L W Yin, N W Wang, Z D Zou et al. Formation and crystal structure of metallic inclusions in a HPHT as-grown diamond single crystal. Appl Phys A, 71, 473(2000).

    [67] J C Angus, H A Will, W S Stanko. Growth of diamond seed crystals by vapor deposition. J Appl Phys, 39, 2915(1968).

    [68] G Y Shu, B Dai, V G Ralchenko et al. Vertical-substrate epitaxial growth of single-crystal diamond by microwave plasma-assisted chemical vapor deposition. J Cryst Growth, 486, 104(2018).

    [69] G Shu, B Dai, V G Ralchenko et al. Growth of three-dimensional diamond mosaics by microwave plasma-assisted chemical vapor deposition. CrystEngComm, 20, 198(2018).

    [70] R C Burns, A I Chumakov, S H Connell et al. HPHT growth and X-ray characterization of high-quality type IIa diamond. J Phys Condens Matter, 21, 364224(2009).

    [71] S N Polyakov, V N Denisov, V Kuzmin N et al. Characterization of top-quality type IIa synthetic diamonds for new X-ray optics. Diam Relat Mater, 20, 726(2011).

    [72] V Yurov, E Bushuev, A Bolshakov et al. Etching kinetics of (100) single crystal diamond surfaces in a hydrogen microwave plasma, studied with In Situ low-coherence interferometry. Phys Status Solidi A, 214, 1700177(2017).

    [73] Q Liang, C Y Chin, J Lai et al. Enhanced growth of high quality single crystal diamond by microwave plasma assisted chemical vapor deposition at high gas pressures. Appl Phys Lett, 94, 024103(2009).

    [74] M Füner, C Wild, P Koidl. Novel microwave plasma reactor for diamond synthesis. Appl Phys Lett, 72, 1149(1998).

    [75] H Yamada, A Chayahara, Y Mokuno et al. A 2-in. mosaic wafer made of a single-crystal diamond. Appl Phys Lett, 104, 102110(2014).

    [76] M Schreck, S Gsell, R Brescia et al. Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers. Sci Rep, 7, 44462(2017).

    [77] S Ohmagari, H Yamada, N Tsubouchi et al. Schottky barrier diodes fabricated on diamond mosaic wafers: Dislocation reduction to mitigate the effect of coalescence boundaries. Appl Phys Lett, 114, 082104(2019).

    [78] A Argoitia, J C Angus, J S Ma et al. Heteroepitaxy of diamond on c-BN: Growth mechanisms and defect characterization. J Mater Res, 9, 1849(1994).

    [79] L Wang, P Pirouz, A Argoitia et al. Heteroepitaxially grown diamond on a c-BN {111} surface. Appl Phys Lett, 63, 1336(1993).

    [80] T Tachibana, Y Yokota, K Miyata et al. Diamond films heteroepitaxially grown on platinum (111). Phys Rev B, 56, 15967(1997).

    [81] W Zhu, P C Yang, J T Glass. Oriented diamond films grown on nickel substrates. Appl Phys Lett, 63, 1640(1993).

    [82] W Liu, D A Tucker, P C Yang et al. Nucleation of oriented diamond particles on cobalt substrates. J Appl Phys, 78, 1291(1995).

    [83] X Jiang, C P Klages. Heteroepitaxial diamond growth on (100) silicon. Diam Relat Mater, 2, 1112(1993).

    [84] H Kawarada, C Wild, N Herres et al. Heteroepitaxial growth of highly oriented diamond on cubic silicon carbide. J Appl Phys, 81, 3490(1997).

    [85] S D Wolter, M T McClure, J T Glass et al. Bias-enhanced nucleation of highly oriented diamond on titanium carbide (111) substrates. Appl Phys Lett, 66, 2810(1995).

    [86] H Bensalah, I Stenger, G Sakr et al. Mosaicity, dislocations and strain in heteroepitaxial diamond grown on iridium. Diam Relat Mater, 66, 188(2016).

    [87] K Ichikawa, K Kurone, H Kodama et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir. Diam Relat Mater, 94, 92(2019).

    [88] K Ohtsuka, K Suzuki, A Sawabe et al. Epitaxial growth of diamond on iridium. Jpn J Appl Phys, 35, L1072(1996).

    [89] M Schreck, T Bauer, S Gsell et al. Domain formation in diamond nucleation on iridium. Diam Relat Mater, 12, 262(2003).

    [90] M J Verstraete, J C Charlier. Why is iridium the best substrate for single crystal diamond growth. Appl Phys Lett, 86, 191917(2005).

    [91] S Kono, M Shiraishi, N I Plusnin et al. X-ray photoelectron diffraction study of the initial stages of CVD diamond heteroepitaxy on Ir (001)/SrTiO3. New Diam Front Carbon Technol, 15, 363(2005).

    [92] N Vaissiere, S Saada, M Bouttemy et al. Heteroepitaxial diamond on iridium: New insights on domain formation. Diam Relat Mater, 36, 16(2013).

    [93] S Washiyama, S Mita, K Suzuki et al. Coalescence of epitaxial lateral overgrowth-diamond on stripe-patterned nucleation on Ir/MgO(001). Appl Phys Express, 4, 095502(2011).

    [94] T Fujisaki, M Tachiki, N Taniyama et al. Initial growth of heteroepitaxial diamond on Ir (001)/MgO (001) substrates using antenna-edge-type microwave plasma assisted chemical vapor deposition. Diam Relat Mater, 12, 246(2003).

    [95] S W Kim, Y Kawamata, R Takaya et al. Growth of high-quality one-inch free-standing heteroepitaxial (001) diamond on (11-20) sapphire substrate. Appl Phys Lett, 117, 202102(2020).

    [96] A Samoto, S Ito, A Hotta et al. Investigation of heterostructure between diamond and iridium on sapphire. Diam Relat Mater, 17, 1039(2008).

    [97] C Bednarski, Z Dai, A P Li et al. Studies of heteroepitaxial growth of diamond. Diam Relat Mater, 12, 241(2003).

    [98] K H Lee, S Saada, J C Arnault et al. Epitaxy of iridium on SrTiO3/Si (001): A promising scalable substrate for diamond heteroepitaxy. Diam Relat Mater, 66, 67(2016).

    [99] T Bauer, S Gsell, M Schreck et al. Growth of epitaxial diamond on silicon via iridium/SrTiO3 buffer layers. Diam Relat Mater, 14, 314(2005).

    [100] M Fischer, R Brescia, S Gsell et al. Growth of twin-free heteroepitaxial diamond on Ir/YSZ/Si(111). J Appl Phys, 104, 123531(2008).

    [101] M Regmi, K More, G Eres. A narrow biasing window for high density diamond nucleation on Ir/YSZ/Si(100) using microwave plasma chemical vapor deposition. Diam Relat Mater, 23, 28(2012).

    [102] S T Lee, Y Lifshitz. The road to diamond wafers. Nature, 424, 500(2003).

    [103] S Gsell, T Bauer, J Goldfuß et al. A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers. Appl Phys Lett, 84, 4541(2004).

    [104] S S Zhang, Z H Li, K Luo et al. Discovery of carbon-based strongest and hardest amorphous material. Natl Sci Rev, in press(2021).

    [105] S S Zhang, Y J Wu, K Luo et al. Narrow-gap, semiconducting, superhard amorphous carbon with high toughness, derived from C60 fullerene. Cell Rep Phys Sci, 2, 100575(2021).

    [106] J Asmussen, T A Grotjohn, T Schuelke et al. Multiple substrate microwave plasma-assisted chemical vapor deposition single crystal diamond synthesis. Appl Phys Lett, 93, 031502(2008).

    [107] T P Chow, R Tyagi. Wide bandgap compound semiconductors for superior high-voltage unipolar power devices. IEEE Trans Electron Devices, 41, 1481(1994).

    [108] D B Laks, C G van de Walle, G F Neumark et al. Role of native defects in wide-band-gap semiconductors. Phys Rev Lett, 66, 648(1991).

    [109] M Nesladek. Conventional n-type doping in diamond: State of the art and recent progress. Semicond Sci Technol, 20, R19(2005).

    [110] T H Borst, O Weis. Boron-doped homoepitaxial diamond layers: Fabrication, characterization, and electronic applications. Phys Status Solidi A, 154, 423(1996).

    [111] R Kalish. The search for donors in diamond. Diam Relat Mater, 10, 1749(2001).

    [112] R M Chrenko. Boron, the dominant acceptor in semiconducting diamond. Phys Rev B, 7, 4560(1973).

    [113] Z Teukam, J Chevallier, C Saguy et al. Shallow donors with high n-type electrical conductivity in homoepitaxial deuterated boron-doped diamond layers. Nat Mater, 2, 482(2003).

    [114] E A Ekimov, V A Sidorov, E D Bauer et al. Superconductivity in diamond. Nature, 428, 542(2004).

    [115] L Boeri, J Kortus, O K Andersen. Three-dimensional MgB2-type superconductivity in hole-doped diamond. Phys Rev Lett, 93, 237002(2004).

    [116] K W Lee, W E Pickett. Superconductivity in boron-doped diamond. Phys Rev Lett, 93, 237003(2004).

    [117] H J Xiang, Z Y Li, J L Yang et al. Electron-phonon coupling in a boron-doped diamond superconductor. Phys Rev B, 70, 212504(2004).

    [118] X Blase, C Adessi, D Connétable. Role of the dopant in the superconductivity of diamond. Phys Rev Lett, 93, 237004(2004).

    [119] Y M Ma, J S Tse, T Cui et al. First-principles study of electron-phonon coupling in hole- and electron-doped diamonds in the virtual crystal approximation. Phys Rev B, 72, 014306(2005).

    [120] F Giustino, J R Yates, I Souza et al. Electron-phonon interaction via electronic and lattice wannier functions: Superconductivity in boron-doped diamond reexamined. Phys Rev Lett, 98, 047005(2007).

    [121] A Kawano, H Ishiwata, S Iriyama et al. Superconductor-to-insulator transition in boron-doped diamond films grown using chemical vapor deposition. Phys Rev B, 82, 085318(2010).

    [122] F Lloret, D Eon, E Bustarret et al. Selectively boron doped homoepitaxial diamond growth for power device applications. Appl Phys Lett, 118, 023504(2021).

    [123] K Tsukioka, H Okushi. Hall mobility and scattering mechanism of holes in boron-doped homoepitaxial chemical vapor deposition diamond thin films. Jpn J Appl Phys, 45, 8571(2006).

    [124] V S Bormashov, S A Tarelkin, S G Buga et al. Electrical properties of the high quality boron-doped synthetic single-crystal diamonds grown by the temperature gradient method. Diam Relat Mater, 35, 19(2013).

    [125] J Isberg, A Lindblom, A Tajani et al. Temperature dependence of hole drift mobility in high-purity single-crystal CVD diamond. Phys Status Solidi A, 202, 2194(2005).

    [126] S A Kajihara, A Antonelli, J Bernholc et al. Nitrogen and potentialn-type dopants in diamond. Phys Rev Lett, 66, 2010(1991).

    [127] S Koizumi, M Kamo, Y Sato et al. Growth and characterization of phosphorus doped n-type diamond thin films. Diam Relat Mater, 7, 540(1998).

    [128] R Kalish. Doping of diamond. Carbon, 37, 781(1999).

    [129] S Koizumi, T Teraji, H Kanda. Phosphorus-doped chemical vapor deposition of diamond. Diam Relat Mater, 9, 935(2000).

    [130] E Gheeraert, S Koizumi, T Teraji et al. Electronic transitions of electrons bound to phosphorus donors in diamond. Solid State Commun, 113, 577(2000).

    [131] M Nesládek, K Meykens, K Haenen et al. Photocurrent and optical absorption spectroscopic study of n-type phosphorus-doped CVD diamond. Diam Relat Mater, 8, 882(1999).

    [132] S Y Yu, J Xu, H Kato et al. Phosphorus-doped nanocrystalline diamond for supercapacitor application. ChemElectroChem, 6, 1088(2019).

    [133] H Kato, S Yamasaki, H Okushi. N-type doping of (001)-oriented single-crystalline diamond by phosphorus. Appl Phys Lett, 86, 222111(2005).

    [134] R Ohtani, T Yamamoto, S D Janssens et al. Large improvement of phosphorus incorporation efficiency in n-type chemical vapor deposition of diamond. Appl Phys Lett, 105, 232106(2014).

    [135] I Sakaguchi, M N Gamo, Y Kikuchi et al. Sulfur: A donor dopant forn-type diamond semiconductors. Phys Rev B, 60, R2139(1999).

    [136] R Kalish, A Reznik, C Uzan-Saguy et al. Is sulfur a donor in diamond. Appl Phys Lett, 76, 757(2000).

    [137] D Saada, J Adler, R Kalish. Sulfur: A potential donor in diamond. Appl Phys Lett, 77, 878(2000).

    [138] J Li, Z W Shan, E Ma. Elastic strain engineering for unprecedented materials properties. MRS Bull, 39, 108(2014).

    [139] J Feng, X F Qian, C W Huang et al. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat Photonics, 6, 866(2012).

    [140] P R Chidambaram, C Bowen, S Chakravarthi et al. Fundamentals of silicon material properties for successful exploitation of strain engineering in modern CMOS manufacturing. IEEE Trans Electron Devices, 53, 944(2006).

    [141] T Zhu, J Li, S Ogata et al. Mechanics of ultra-strength materials. MRS Bull, 34, 167(2009).

    [142] T Zhu, J Li. Ultra-strength materials. Prog Mater Sci, 55, 710(2010).

    [143] H T Zhang, J Tersoff, S Xu et al. Approaching the ideal elastic strain limit in silicon nanowires. Sci Adv, 2, e1501382(2016).

    [144] P Humble, R H J Hannink. Plastic deformation of diamond at room temperature. Nature, 273, 37(1978).

    [145] V Blank, M Popov, G Pivovarov et al. Ultrahard and superhard phases of fullerite C60: Comparison with diamond on hardness and wear. Diam Relat Mater, 7, 427(1998).

    [146] M I Eremets, I A Trojan, P Gwaze et al. The strength of diamond. Appl Phys Lett, 87, 141902(2005).

    [147] J M Wheeler, R Raghavan, J Wehrs et al. Approaching the limits of strength: Measuring the uniaxial compressive strength of diamond at small scales. Nano Lett, 16, 812(2016).

    [148] A Banerjee, D Bernoulli, H Zhang et al. Ultralarge elastic deformation of nanoscale diamond. Science, 360, 300(2018).

    [149] Z Shi, E Tsymbalov, M Dao et al. Deep elastic strain engineering of bandgap through machine learning. PNAS, 116, 4117(2019).

    [150] C Liu, X Q Song, Q Li et al. Smooth flow in diamond: Atomistic ductility and electronic conductivity. Phys Rev Lett, 123, 195504(2019).

    [151] A M Nie, Y Q Bu, P H Li et al. Approaching diamond's theoretical elasticity and strength limits. Nat Commun, 10, 5533(2019).

    [152] C Dang, J P Chou, B Dai et al. Achieving large uniform tensile elasticity in microfabricated diamond. Science, 371, 76(2021).

    [153] Z Shi, M Dao, E Tsymbalov et al. Metallization of diamond. PNAS, 117, 24634(2020).

    [154] C Liu, X Q Song, Q Li et al. Superconductivity in compression-shear deformed diamond. Phys Rev Lett, 124, 147001(2020).

    [155] S Yang, Y Wang, D D B Rao et al. High-fidelity transfer and storage of photon states in a single nuclear spin. Nat Photonics, 10, 507(2016).

    [156] K Y Yip, K O Ho, K Y Yu et al. Measuring magnetic field texture in correlated electron systems under extreme conditions. Science, 366, 1355(2019).

    [157] M V Gustafsson, T Aref, A F Kockum et al. Propagating phonons coupled to an artificial atom. Science, 346, 207(2014).

    Chaoqun Dang, Anliang Lu, Heyi Wang, Hongti Zhang, Yang Lu. Diamond semiconductor and elastic strain engineering[J]. Journal of Semiconductors, 2022, 43(2): 021801
    Download Citation