• Photonics Research
  • Vol. 10, Issue 7, 1617 (2022)
Qian Zhao1, Shijie Tu1, Qiannan Lei1, Chengshan Guo1、4、*, Qiwen Zhan2、5、*, and Yangjian Cai1、3、6、*
Author Affiliations
  • 1Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
  • 2School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 3School of Physical Science and Technology, Soochow University, Suzhou 215006, China
  • 4e-mail: guochsh@sdnu.edu.cn
  • 5e-mail: qwzhan@usst.edu.cn
  • 6e-mail: yangjiancai@sdnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.457928 Cite this Article Set citation alerts
    Qian Zhao, Shijie Tu, Qiannan Lei, Chengshan Guo, Qiwen Zhan, Yangjian Cai. Creation of cylindrical vector beams through highly anisotropic scattering media with a single scalar transmission matrix calibration[J]. Photonics Research, 2022, 10(7): 1617 Copy Citation Text show less
    References

    [1] M. R. Dennis, K. O’holleran, M. J. Padgett. Singular optics: optical vortices and polarization singularities. Progress in Optics, 53, 293-363(2009).

    [2] K. S. Youngworth, T. G. Brown. Focusing of high numerical aperture cylindrical-vector beams. Opt. Express, 7, 77-87(2000).

    [3] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon., 1, 1-57(2009).

    [4] R. Dorn, S. Quabis, G. Leuchs. Sharper focus for a radially polarized light beam. Phys. Rev. Lett., 91, 233901(2003).

    [5] Q. Zhan, J. R. Leger. Focus shaping using cylindrical vector beams. Opt. Express, 10, 324-331(2002).

    [6] Y. Cai, W. Liu, W. Yang, J. Xu, H. Yang, K. Shi. Differential fluorescence microscopy by using a dynamic cylindrical-vector field. Opt. Lett., 46, 2332-2335(2021).

    [7] Y. Kozawa, D. Matsunaga, S. Sato. Superresolution imaging via superoscillation focusing of a radially polarized beam. Optica, 5, 86-92(2018).

    [8] Q. Zhan. Trapping metallic Rayleigh particles with radial polarization. Opt. Express, 12, 3377-3382(2004).

    [9] M.-C. Zhong, L. Gong, D. Li, J.-H. Zhou, Z.-Q. Wang, Y.-M. Li. Optical trapping of core-shell magnetic microparticles by cylindrical vector beams. Appl. Phys. Lett., 105, 181112(2014).

    [10] Y. Kozawa, S. Sato. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams. Opt. Express, 18, 10828-10833(2010).

    [11] M. Meier, V. Romano, T. Feurer. Material processing with pulsed radially and azimuthally polarized laser radiation. Appl. Phys. A, 86, 329-334(2007).

    [12] L. Zhang, W. Zhang, F. Lu, Z. Yang, T. Xue, M. Liu, C. Meng, P. Li, D. Mao, T. Mei, J. Zhao. Azimuthal vector beam exciting silver triangular nanoprisms for increasing the performance of surface-enhanced Raman spectroscopy. Photon. Res., 7, 1447-1453(2019).

    [13] M. Liu, W. Zhang, F. Lu, T. Xue, X. Li, L. Zhang, D. Mao, L. Huang, F. Gao, T. Mei, J. Zhao. Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy. Photon. Res., 7, 526-531(2019).

    [14] D. Pohl. Operation of a ruby laser in the purely transverse electric mode TE01. Appl. Phys. Lett., 20, 266-267(1972).

    [15] Y. Mushiake, K. Matsumura, N. Nakajima. Generation of radially polarized optical beam mode by laser oscillation. Proc. IEEE, 60, 1107-1109(1972).

    [16] X.-L. Wang, J. Ding, W.-J. Ni, C.-S. Guo, H.-T. Wang. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Opt. Lett., 32, 3549-3551(2007).

    [17] W. Han, Y. Yang, W. Cheng, Q. Zhan. Vectorial optical field generator for the creation of arbitrarily complex fields. Opt. Express, 21, 20692-20706(2013).

    [18] S. Liu, S. Qi, Y. Zhang, P. Li, D. Wu, L. Han, J. Zhao. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude. Photon. Res., 6, 228-233(2018).

    [19] M. Beresna, M. Gecevičius, P. G. Kazansky. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass [Invited]. Opt. Mater. Express, 1, 783-795(2011).

    [20] M. Beresna, M. Gecevičius, P. G. Kazansky, T. Gertus. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl. Phys. Lett., 98, 201101(2011).

    [21] C. Hernández-García, A. Turpin, J. San Román, A. Picón, R. Drevinskas, A. Cerkauskaite, P. G. Kazansky, C. G. Durfee, Í. J. Sola. Extreme ultraviolet vector beams driven by infrared lasers. Optica, 4, 520-526(2017).

    [22] M. Plöschner, T. Tyc, T. Čižmár. Seeing through chaos in multimode fibres. Nat. Photonics, 9, 529-535(2015).

    [23] W. Xiong, C. W. Hsu, Y. Bromberg, J. E. Antonio-Lopez, R. Amezcua Correa, H. Cao. Complete polarization control in multimode fibers with polarization and mode coupling. Light Sci. Appl., 7, 54(2018).

    [24] H. B. d. Aguiar, S. Gigan, S. Brasselet. Polarization recovery through scattering media. Sci. Adv., 3, e1600743(2017).

    [25] I. M. Vellekoop. Feedback-based wavefront shaping. Opt. Express, 23, 12189-12206(2015).

    [26] D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, R. Piestun. Genetic algorithm optimization for focusing through turbid media in noisy environments. Opt. Express, 20, 4840-4849(2012).

    [27] H. Li, C. M. Woo, T. Zhong, Z. Yu, Y. Luo, Y. Zheng, X. Yang, H. Hui, P. Lai. Adaptive optical focusing through perturbed scattering media with a dynamic mutation algorithm. Photon. Res., 9, 202-212(2021).

    [28] Z. Yaqoob, D. Psaltis, M. S. Feld, C. Yang. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics, 2, 110-115(2008).

    [29] Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, L. V. Wang. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light. Nat. Commun., 6, 5904(2015).

    [30] S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, S. Gigan. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 104, 100601(2010).

    [31] Y.-Y. Xie, B.-Y. Wang, Z.-J. Cheng, Q.-Y. Yue, C.-S. Guo. Measurement of vector transmission matrix and control of beam focusing through a multiple-scattering medium based on a vector spatial light modulator and two-channel polarization holography. Appl. Phys. Lett., 110, 221105(2017).

    [32] S.-J. Tu, X. Zhao, Q.-Y. Yue, Y.-J. Cai, C.-S. Guo, Q. Zhao. Shaping the illumination beams for STED imaging through highly scattering media. Appl. Phys. Lett., 119, 211105(2021).

    [33] S. Tripathi, R. Paxman, T. Bifano, K. C. Toussaint. Vector transmission matrix for the polarization behavior of light propagation in highly scattering media. Opt. Express, 20, 16067-16076(2012).

    [34] P. Yu, Q. Zhao, X. Hu, Y. Li, L. Gong. Tailoring arbitrary polarization states of light through scattering media. Appl. Phys. Lett., 113, 121102(2018).

    [35] A. Turpin, I. Vishniakou, J. d. Seelig. Light scattering control in transmission and reflection with neural networks. Opt. Express, 26, 30911-30929(2018).

    [36] Y. Luo, S. Yan, H. Li, P. Lai, Y. Zheng. Towards smart optical focusing: deep learning-empowered dynamic wavefront shaping through nonstationary scattering media. Photon. Res., 9, B262-B278(2021).

    [37] Y. Luo, S. Yan, H. Li, P. Lai, Y. Zheng. Focusing light through scattering media by reinforced hybrid algorithms. APL Photon., 5, 016109(2020).

    [38] S. Tripathi, K. C. Toussaint. Harnessing randomness to control the polarization of light transmitted through highly scattering media. Opt. Express, 22, 4412-4422(2014).

    [39] I. M. Vellekoop, A. Mosk. Focusing coherent light through opaque strongly scattering media. Opt. Lett., 32, 2309-2311(2007).

    [40] L. Gong, Y. Ren, W. Liu, M. Wang, M. Zhong, Z. Wang, Y. Li. Generation of cylindrically polarized vector vortex beams with digital micromirror device. J. Appl. Phys., 116, 183105(2014).

    [41] J. Yang, Q. He, L. Liu, Y. Qu, R. Shao, B. Song, Y. Zhao. Anti-scattering light focusing by fast wavefront shaping based on multi-pixel encoded digital-micromirror device. Light Sci. Appl., 10, 149(2021).

    [42] D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, C. Yang. Focusing through dynamic tissue with millisecond digital optical phase conjugation. Optica, 2, 728-735(2015).

    [43] W.-H. Lee. Binary computer-generated holograms. Appl. Opt., 18, 3661-3669(1979).

    [44] B. Perez-Garcia, C. López-Mariscal, R. I. Hernandez-Aranda, J. C. Gutiérrez-Vega. On-demand tailored vector beams. Appl. Opt., 56, 6967-6972(2017).

    [45] S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan. Image transmission through an opaque material. Nat. Commun., 1, 81(2010).

    [46] E. Edrei, G. Scarcelli. A trade-off between speckle size and intensity enhancement of a focal point behind a scattering layer. Sci. Rep., 9, 11256(2019).

    [47] J.-H. Park, C. Park, H. Yu, Y.-H. Cho, Y. Park. Dynamic active wave plate using random nanoparticles. Opt. Express, 20, 17010-17016(2012).

    Qian Zhao, Shijie Tu, Qiannan Lei, Chengshan Guo, Qiwen Zhan, Yangjian Cai. Creation of cylindrical vector beams through highly anisotropic scattering media with a single scalar transmission matrix calibration[J]. Photonics Research, 2022, 10(7): 1617
    Download Citation