• Journal of Semiconductors
  • Vol. 41, Issue 10, 101301 (2020)
Haomiao Wang1,2, Hongyu Chai1,2, Zunren Lv1,2, Zhongkai Zhang1,2..., Lei Meng1,2, Xiaoguang Yang1,2 and Tao Yang1,2|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-4926/41/10/101301 Cite this Article
    Haomiao Wang, Hongyu Chai, Zunren Lv, Zhongkai Zhang, Lei Meng, Xiaoguang Yang, Tao Yang. Silicon photonic transceivers for application in data centers[J]. Journal of Semiconductors, 2020, 41(10): 101301 Copy Citation Text show less
    References

    [1]

    [2] N Jones. The information factories. Nature, 561, 163(2018).

    [3] D Miller. Device requirements for optical interconnects to silicon chips. Proc IEEE, 97, 1166(2009).

    [4] K Ohashi, K Nishi, T Shimizu et al. On-chip optical interconnect. Proc IEEE, 97, 1186(2009).

    [5] Z G Lu, J R Liu, C Y Song et al. High performance InAs/InP quantum dot 34.462-GHz C-band coherent comb laser module. Opt Express, 26, 2160(2018).

    [6] Z R Lv, Z K Zhang, X G Yang et al. Improved performance of 1.3-μm InAs/GaAs quantum dot lasers by direct Si doping. Appl Phys Lett, 113, 011105(2018).

    [7] L Chen, Q Xu, M G Wood et al. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica, 1, 112(2014).

    [8] C Wang, M Zhang, X Chen et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).

    [9] S Liao, N N Feng, D Feng. 36 GHz submicron silicon waveguide germanium photodetector. Opt Express, 19, 10967(2011).

    [10] L Chen, C R Doerr, Y K Chen et al. Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides. IEEE Photonics Technol Lett, 22, 1744(2010).

    [11] T Pinguet, S Denton, S Gloeckner et al. High-volume manufacturing platform for silicon photonics. Proc IEEE, 106, 2281(2018).

    [12] Q Z Deng, L Liu, R Zhang et al. Athermal and flat-topped silicon Mach-Zehnder filters. Opt Express, 24, 29577(2016).

    [13] T Hiraki, H Nishi, T Tsuchizawa et al. Si–Ge–silica monolithic integration platform and its application to a 22-Gb/s × 16-ch WDM receiver. IEEE Photonics J, 5, 4500407(2013).

    [14] A Mekis, S Gloeckner, G Masini et al. A grating-coupler-enabled CMOS photonics platform. IEEE J Sel Top Quantum Electron, 17, 597(2011).

    [15] J N Winn, D Rusin, C S Kochanek. A high-speed silicon optical modulator based on a metal-oxide-semiconducor capacitor. Nature, 427, 613(2004).

    [16] C T DeRose, D C Trotter, W A Zortman et al. Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current. Opt Express, 19, 24897(2011).

    [17] H Ennen, J Schneider, G Pomrenke et al. 1.54-μm luminescence of erbium-implanted III–V semiconductors and silicon. Appl Phys Lett, 43, 943(1983).

    [18] S Wirths, R Geiger, N von den Driesch et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nat Photonics, 9, 88(2015).

    [19] M d'Avezac, J W Luo, T Chanier et al. Genetic-algorithm discovery of a direct-gap and optically allowed superstructure from indirect-gap Si and Ge semiconductors. Phys Rev Lett, 108, 027401(2012).

    [20] R E Camacho-Aguilera, Y Cai, N Patel et al. An electrically pumped germanium laser. Opt Express, 20, 11316(2012).

    [21] Z Zhou, B Yin, J Michel. On-chip light sources for silicon photonics. Light: Sci Appl, 4, e358(2015).

    [22] N Kobayashi, K Sato, M Namiwaka et al. Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers. J Lightwave Technol, 33, 1241(2015).

    [23] T Wang, H Liu. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt Express, 19, 11381(2011).

    [24] S Chen, W Li, J Wu et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photonics, 10, 307(2016).

    [25] Q Li, K W Ng, K M Lau. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon. Appl Phys Lett, 106, 072105(2015).

    [26] C S Schulze, X Huang, C Prohl et al. Atomic structure and stoichiometry of In(Ga)As/GaAs quantum dots grown on an exact-oriented GaP/Si(001) substrate. Appl Phys Lett, 108, 143101(2016).

    [27] Y Wan, Q Li, Y Geng et al. InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band. Appl Phys Lett, 107, 081106(2015).

    [28] A W Fang, H Park, J E Bowers. Electrically pumped hybrid AlGaInAs–silicon evanescent laser. Opt Express, 14, 9203(2006).

    [29] C Zhang, J E Bowers. Silicon photonic terabit/s network-on-chip for datacenter interconnection. Opt Fiber Technol, 44, 2(2018).

    [30] E Agrell, M Karlsson, A R Chraplyvy et al. Roadmap of optical communications. J Opt, 18, 063002(2016).

    [31] Y Urino, T Usuki, J Fujikata et al. High-density and wide-bandwidth optical interconnects with silicon optical interposers. Photonics Res, 2, A1(2014).

    [32] T Shimizu, N Hatori, Y Arakawa. High density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for inter-chip optical interconnection. Group IV Photonics, 181(2011).

    [33] B Jang, K Tanabe, S Kako et al. A hybrid silicon evanescent quantum dot laser. Appl Phys Express, 9, 092102(2016).

    [34] H Wang, D Kim, M Harfouche et al. Narrow-linewidth oxide-confined heterogeneously integrated Si/III–V semiconductor lasers. IEEE Photonics Technol Lett, 29, 2199(2017).

    [35] Y Arakawa, H Sakaki. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl Phys Lett, 40, 939(1982).

    [36] M Sugawara, M Usami. Handiling the heat QD-lasers. Nat Photonics, 3, 30(2009).

    [37] K Nishi, H Saito, S Sugou et al. A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates. Appl Phys Lett, 74, 1111(1999).

    [38] K Nishi, K Takemasa, M Sugawara et al. Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J Sel Top Quantum Electron, 23, 1(2017).

    [39] K Takada, Y Tanaka, T Matsumoto et al. Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers. Electron Lett, 47, 206(2011).

    [40] A Akrout, A Shen, R Brenot et al. Separate error-free transmission of eight channels at 10 Gb/s using comb generation in a quantum-dash-based mode-locked laser. IEEE Photonics Technol Lett, 21, 1746(2009).

    [41] D O'Brien, S P Hegarty, G Huyet et al. Sensitivity of quantum-dot semiconductor lasers to optical feedback. Opt Lett, 29, 1072(2004).

    [42] Y G Zhou, C Zhou, C F Cao et al. Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge. Opt Express, 25, 28817(2017).

    [43] M Liao, S Chen, J S Park et al. III–V quantum-dot lasers monolithically grown on silicon. Semicond Sci Technol, 33, 123002(2018).

    [44]

    [45] D Jung, J Norman, M J Kennedy et al. High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si. Appl Phys Lett, 111, 122107(2017).

    [46] B Shi, L Wang, A A Taylor et al. MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3 μm quantum dot laser applications. Appl Phys Lett, 114, 172102(2019).

    [47] W Q Wei, J H Wang, B Zhang et al. InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm. Appl Phys Lett, 113, 053107(2018).

    [48] T Ward, A M Sánchez, M Tang et al. Design rules for dislocation filters. J Appl Phys, 116, 063508(2014).

    [49] K Volz, A Beyer, W Witte et al. GaP-nucleation on exact Si (001) substrates for III/V device integration. J Cryst Growth, 315, 37(2011).

    [50] R Alcotte, M Martin, J Moeyaert et al. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility. APL Mater, 4, 046101(2016).

    [51] B Zhang, W Q Wei, J H Wang et al. O-band InAs/GaAs quantum-dot microcavity laser on Si (001) hollow substrate by in-situ hybrid epitaxy. AIP Adv, 9, 015331(2019).

    [52] D Jung, P G Callahan, B Shin et al. Low threading dislocation density GaAs growth on on-axis GaP/Si (001). J Appl Phys, 122, 225703(2017).

    [53] A D Lee, g Q Jiang, g M C Tang et al. InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates. IEEE J Sel Top Quantum Electron, 19, 1901107(2013).

    [54] M Akiyama, Y Kawarada, T Ueda et al. Growth of high quality GaAs layers on Si substrate by MOCVD. J Cryst Growth, 77, 490(1986).

    [55] M Tang, S Chen, J Wu et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers. Opt Express, 22, 11528(2014).

    [56] W Li, S Chen, M Tang et al. Effect of rapid thermal annealing on threading dislocation density in III–V epilayers monolithically grown on silicon. J Appl Phys, 123, 215303(2018).

    [57] Y Wan, D Inoue, D Jung et al. Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability. Photonics Res, 6, 776(2018).

    [58] Y Urino, T Shimizu, M Okano et al. First demonstration of high density optical interconnects integrated with lasers, optical modulators and photodetectors on single silicon substrate. Opt Express, 19, B159(2011).

    [59] D J Thomson, F Y Gardes, J M Fedeli et al. 50-Gb/s silicon optical modulator. IEEE Photonics Technol Lett, 24, 234(2012).

    [60] J Witzens. High-speed silicon photonics modulators. Proc IEEE, 106, 2158(2018).

    [61] M Ziebell, D Marris-Morini, G Rasigade et al. 40 Gbit/s low-loss silicon optical modulator based on a pipin diode. Opt Express, 20, 10591(2012).

    [62] E Timurdogan, C M Sorace-Agaskar, J Sun et al. An ultralow power athermal silicon modulator. Nat Commun, 5, 4008(2014).

    [63] K Debnath, D J Thomson, W Zhang et al. All-silicon carrier accumulation modulator based on a lateral metal–oxide–semiconductor capacitor. Photonics Res, 6, 373(2018).

    [64] Y Ishikawa, K Wada, J Liu et al. Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers grown on Si substrate. J Appl Phys, 98, 013501(2005).

    [65] Y Ishikawa, K Wada, D D Cannon et al. Strain-induced band gap shrinkage in Ge grown on Si substrate. Appl Phys Lett, 82, 2044(2003).

    [66] T Yin, R Cohen. 31GHz Ge n–i–p waveguide photodetectors on silicon-on-insulator substrate. Opt Express, 15, 13965(2007).

    [67] G Dehlinger, S J Koester, J D Schaub et al. High-speed germanium-on-SOI lateral PIN photodiodes. IEEE Photonics Technol Lett, 16, 2547(2004).

    [68] S Lischke, D Knoll, C Mai et al. High bandwidth, high responsivity waveguide-coupled germanium p–i–n photodiode. Opt Express, 23, 27213(2015).

    [69] S Pathak, P Dumon, D Van Thourhout et al. Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator. IEEE Photonics J, 6, 1(2014).

    [70] S H Jeong, Y Tanaka. Silicon-wire optical demultiplexers based on multistage delayed Mach-Zehnder interferometers for higher production yield. Appl Opt, 57, 6474(2018).

    [71] S Pathak, M Vanslembrouck, P Dumon et al. Optimized silicon AWG with flattened spectral response using an MMI aperture. J Lightwave Technol, 31, 87(2013).

    [72] Y Urino, N Hatori, K Mizutani et al. First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 °C. J Lightwave Technol, 33, 1223(2015).

    [73] K Kurata, Y Suzuki, M Kurihara et al. Prospect of chip scale silicon photonics transceiver for high density multi-mode wiring system. Opt Commun, 362, 36(2016).

    [74] K Yashiki, T Uemura, M Kurihara et al. 25-Gbps/ch error-free operation over 300-m MMF of low-power-consumption silicon-photonics-based chip-scale optical I/O cores. IEICE Trans Electron, E99.C, 148(2016).

    [75] T Nakamura, K Yashiki, K Mizutani et al. Fingertip-size optical module, optical io core, and its application in FPGA. 2019 the Institude of Electronics, Information and Communication Engineers, E102-C, 333(2019).

    [76] T Aoki, S Sekiguchi, T Simoyama et al. Low-crosstalk simultaneous 16-channel × 25 Gb/s operation of high-density silicon photonics optical transceiver. J Lightwave Technol, 36, 1262(2018).

    [77]

    [78]

    [79] S Kupijai, H Rhee, A Al-Saadi et al. 25 Gb/s silicon photonics interconnect using a transmitter based on a node-matched-diode modulator. J Lightwave Technol, 34, 2920(2016).

    [80]

    [81]

    [82]

    [83] A Moscoso-Martir, A Tabatabaei-Mashayekh, J Muller et al. 8-channel WDM silicon photonics transceiver with SOA and semiconductor mode-locked laser. Opt Express, 26, 25446(2018).

    [84] J Verbist, J Lambrecht, M Verplaetse et al. Real-time and DSP-free 128 Gb/s PAM-4 link using a binary driven silicon photonic transmitter. J Lightwave Technol, 37, 274(2019).

    [85]

    [86]

    [87] Z Zhang, C Li, J Chen et al. Coherent transceiver operating at 61-Gbaud/s. Opt Express, 23, 18988(2015).

    [88]

    [89]

    [90] E Depaoli, H Zhang, M Mazzini et al. A 64 Gb/s low-power transceiver for short-reach PAM-4 electrical links in 28-nm FDSOI CMOS. IEEE J Solid-State Circuits, 54, 6(2019).

    [91]

    [92]

    [93] C R Doerr, N K Fontaine, L L Buhl. PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls. IEEE Photonics Technol Lett, 24, 697(2012).

    [94] D Po, L Xiang, S Chandrasekhar et al. Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters. IEEE J Sel Top Quantum Electron, 20, 150(2014).

    [95] H Sepehrian, J Lin, L A Rusch et al. Silicon photonic IQ modulators for 400 Gb/s and beyond. J Lightwave Technol, 37, 3078(2019).

    [96]

    Haomiao Wang, Hongyu Chai, Zunren Lv, Zhongkai Zhang, Lei Meng, Xiaoguang Yang, Tao Yang. Silicon photonic transceivers for application in data centers[J]. Journal of Semiconductors, 2020, 41(10): 101301
    Download Citation