• Acta Optica Sinica
  • Vol. 41, Issue 1, 0112001 (2021)
Rihong Zhu1、2、*, Yue Sun1、2, and Hua Shen1、2、**
Author Affiliations
  • 1School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
  • 2MIIT Key Laboratory of Advanced Solid Laser, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
  • show less
    DOI: 10.3788/AOS202141.0112001 Cite this Article Set citation alerts
    Rihong Zhu, Yue Sun, Hua Shen. Progress and Prospect of Optical Freeform Surface Measurement[J]. Acta Optica Sinica, 2021, 41(1): 0112001 Copy Citation Text show less
    References

    [1] Wills S. Freeform optics: notes from the revolution[J]. Optics & Photonics News, 28, 34-41(2017). http://adsabs.harvard.edu/abs/2017OptPN..28...34W

    [2] Thompson K P, Rolland J P. Freeform optical surfaces: a revolution in imaging optical design[J]. Optics & Photonics News, 23, 30-35(2012).

    [3] Wei S L, Zhu Z B, Fan Z C et al. Multi-surface catadioptric freeform lens design for ultra-efficient off-axis road illumination[J]. Optics Express, 27, A779-A789(2019). http://arxiv.org/abs/1903.00931

    [4] Wu R M, Ding Z H, Yang L et al. Precise light control in highly tilted geometry by freeform illumination optics[J]. Optics Letters, 44, 2887-2890(2019).

    [5] Zhu Z B, Ma D L, Hu Q M et al. Catadioptric freeform optical system design for LED off-axis road illumination applications[J]. Optics Express, 26, A54-A65(2018).

    [6] Wu H B, Zhang X M, Ge P et al. A high-efficiency freeform reflector for a light-emitting diode low-beam headlamp[J]. Lighting Research & Technology, 48, 1005-1016(2016). http://smartsearch.nstl.gov.cn/paper_detail.html?id=d4efcad10f5475a2ddf76467e1568a7f

    [7] Wang Q F, Cheng D W, Wang Y T et al. Design, tolerance, and fabrication of an optical see-through head-mounted display with free-form surface elements[J]. Applied Optics, 52, C88(2013). http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-52-7-C88

    [8] Meng X X, Liu W Q, Zhang D L et al. Design of wide field-of-view head-mounted display optical system with double freeform surfaces[J]. Infrared and Laser Engineering, 45, 0418004(2016).

    [9] Wei L D, Li Y C, Jing J J et al. Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface[J]. Optics Express, 26, 8550-8565(2018). http://www.ncbi.nlm.nih.gov/pubmed/29715821

    [10] Liu J, Huang W. Optical system design of reflective head mounted display using freeform surfaces[J]. Infrared and Laser Engineering, 45, 1018001(2016).

    [11] Wang J H, Liang Y C, Xu M. Design of a see-through head-mounted display with a freeform surface[J]. Journal of the Optical Society of Korea, 19, 614-618(2015). http://www.researchgate.net/publication/292551724_Design_of_a_See-Through_Head-Mounted_Display_with_a_Freeform_Surface

    [12] Bian Y X, Li H F, Wang Y F et al. Method to design two aspheric surfaces for a wide field of view imaging system with low distortion[J]. Applied Optics, 54, 8241-8247(2015).

    [13] Zhao W, Liu X, Li H. Design of laser projection display illumination system based on freeform surface array[J]. Acta Optica Sinica, 38, 0622001(2018).

    [14] Yu B H, Tian Z H, Su D Q et al. Design and engineering verification of an ultrashort throw ratio projection system with a freeform mirror[J]. Applied Optics, 58, 3575-3581(2019). http://www.ncbi.nlm.nih.gov/pubmed/31044857

    [15] Yu B H. Research on key technology of ultra-short-focus projection objective system based on freeform surfaces[D]. Beijing: University of Chinese Academy of Sciences(2019).

    [16] Nie Y F, Mohedano R, Benitez P et al. Multifield direct design method for ultrashort throw ratio projection optics with two tailored mirrors[J]. Applied Optics, 55, 3794-3800(2016).

    [17] Cayrel M. E-ELT optomechanics: overview[J]. Proceedings of SPIE, 8444, 84441X(2012).

    [18] Howard J M, Wolbach S. Improving the performance of three-mirror imaging systems with Freeform Optics. [C]∥Renewable Energy and the Environment, Tucson, Arizona. Washington, D. C.: OSA, FT2B, 6(2013).

    [19] Meng Q Y, Wang H Y, Wang K J et al. Off-axis three-mirror freeform telescope with a large linear field of view based on an integration mirror[J]. Applied Optics, 55, 8962-8970(2016).

    [20] Meng Q Y, Wang H Y, Liang W J et al. Design of off-axis three-mirror systems with ultrawide field of view based on an expansion process of surface freeform and field of view[J]. Applied Optics, 58, 609-615(2019).

    [21] Zhang X, Xu Y C. Study on free-form optical testing[J]. Chinese Optics and Applied Optics Abstracts, 1, 92-99(2008).

    [22] Li A, Wang Y G, Wu Z Q et al. Data processing of high-order aspheric surface measurements using CMM in optical fabrication[J]. Chinese Optics, 13, 302-312(2020).

    [23] Werner K. XENOS-the new standard[J]. Advanced Technologies in Mechanics, 1, 28-31(2014).

    [24] Spitz S N. Requicha A A G. Multiple-goals path planning for coordinate measuring machines. [C]∥Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings, April 24-28, 2000, San Francisco, CA, USA. New York: IEEE, 2322-2327(2000).

    [25] Spyridi A J. Requicha A A G. Automatic programming of coordinate measuring machines. [C]∥Proceedings of the 1994 IEEE International Conference on Robotics and Automation, May 8-13, 1994, San Diego, CA, USA. New York: IEEE, 1107-1112(1994).

    [26] Fang Y, Chen K N, Lin Z H. Stereo vision and CMM-integrated intelligent inspection system in reverse engineering[J]. Proceedings of SPIE, 3521, 115-122(1998). http://spiedigitallibrary.org/proceeding.aspx?articleid=966789

    [27] Gao H, Zhang X, Fang F. Axicon profile metrology using contact stylus method[J]. International Journal of Nanomanufacturing, 14, 177-191(2018).

    [28] Stover E, Berger G, Wendel M et al. Fast optical 3D form measurement of aspheres including determination of thickness and wedge and decenter errors[J]. Proceedings of SPIE, 9633, 96331O(2015). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2197184

    [29] Berger G, Petter J. Non-contact metrology of aspheric surfaces based on MWLI technology[J]. Proceedings of SPIE, 8884, 88840V(2013). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1756722

    [30] Henselmans R, Cacace L A. Kramer G F Y, et al. The NANOMEFOS non-contact measurement machine for freeform optics[J]. Precision Engineering, 35, 607-624(2011).

    [31] Bos A, Henselmans R. Rosielle P C J N, et al. Nanometre-accurate form measurement machine for E-ELT M1 segments[J]. Precision Engineering, 40, 14-25(2015).

    [32] Anderson D S, Burge J H. Swing-arm profilometry of aspherics[J]. Proceedings of SPIE, 2536, 169-179(1995).

    [33] Su P, Oh C J, Parks R E et al. Swing-arm optical CMM for aspherics[J]. Proceedings of SPIE, 7426, 74260J(2009).

    [34] Burge J H, Benjamin S, Caywood D et al. Fabrication and testing of 1.4-m convex off-axis aspheric optical surfaces[J]. Proceedings of SPIE, 7426, 74260L(2009). http://www.spie.org/x648.xml?product_id=828513

    [35] Wang Y, Su P, Parks R E et al. Swing arm optical coordinate-measuring machine: high precision measuring ground aspheric surfaces using a laser triangulation probe[J]. Optical Engineering, 51, 073603(2012). http://spie.org/Publications/Journal/10.1117/1.OE.51.7.073603

    [36] Jia L D, Wang J W, Zheng Z W et al. Uncertainty analysis on swing-arm profilometer for optical aspherics[J]. China Mechanical Engineering, 20, 2040-2044(2009).

    [37] Jing H W, Lin C Q, Fan B et al. Measurement of an off-axis parabolic mirror using coordinates measurement machine and swing arm profilometer during the grinding process[J]. Proceedings of SPIE, 8415, 84150K(2012).

    [38] Wei Z W, Jing H W, Kuang L et al. Error separation technique for measuring aspheric surface based on dual probes[J]. Proceedings of SPIE, 8905, 89051S(2013). http://proceedings.spiedigitallibrary.org/mobile/proceeding.aspx?articleid=1741225

    [39] Xiong L, Luo X, Liu Z Y et al. Swing arm profilometer: analytical solutions of misalignment errors for testing axisymmetric optics[J]. Optical Engineering, 55, 074108(2016).

    [40] Xiong L, Luo X, Liu Z Y et al. Measurement of 2 m SiC asphere mirror based on swing arm profilometer[J]. Acta Optica Sinica, 35, 1212002(2015).

    [41] Xiong L. Research on swing-arm profilometer test for large-aperture complex optical surface[D]. Beijing: University of Chinese Academy of Sciences(2017).

    [42] Neal D R, Armstrong D J, Tim Turner W. Wavefront sensors for control and processing monitoring in optics manufacture[J]. Proceedings of SPIE, 2993, 211-220(1997). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1028295

    [43] Guo W J, Zhao L P, Tong C S et al. Adaptive centroid-finding algorithm for freeform surface measurements[J]. Applied Optics, 52, D75-D83(2013).

    [44] Aftab M, Choi H, Liang R G et al. Adaptive Shack-Hartmann wavefront sensor accommodating large wavefront variations[J]. Optics Express, 26, 34428-34441(2018). http://www.researchgate.net/publication/329780844_Adaptive_Shack-Hartmann_wavefront_sensor_accommodating_large_wavefront_variations

    [45] Zhang J P. Research on testing aspherical surface using Shack-Hartmann wavefront sensor[D]. Beijing: University of Chinese Academy of Sciences(2012).

    [46] Wu Q Q, Zhang X D, Fang F Z et al. Shape measurement of the cubic phase plate with wavefront sensing technology[J]. Optical Technique, 40, 105-112(2014).

    [47] Knauer M C, Kaminski J, Hausler G. Phase measuring deflectometry: a new approach to measure specular free-form surfaces[J]. Proceedings of SPIE, 5457, 366-376(2004). http://spie.org/x648.html?product_id=545704

    [48] Reich C, Ritter R, Thesing J. 3-D shape measurement of complex objects by combining photogrammetry and fringe projection[J]. Optical Engineering, 39, 224-231(2000). http://onlinelibrary.wiley.com/resolve/reference/ADS?id=2000OptEn..39..224R

    [49] Su X Y, Zhang Q C, Chen W J. Three-dimensional imaging based on structured illumination[J]. Chinese Journal of Lasers, 41, 0209001(2014).

    [50] Cui Y J, Zhang W F, Li J X et al. A method of Gamma correction in fringe projection measurement[J]. Acta Optica Sinica, 35, 0112002(2015).

    [51] Song Q, Chen Y, Zhu R G et al. Research of 3D measurement technology based on gray code projection[J]. Laser & Optoelectronics Progress, 51, 031203(2014).

    [52] Feng S J, Zuo C, Yin W et al. Application of deep learning technology to fringe projection 3D imaging[J]. Infrared and Laser Engineering, 49, 0303018(2020).

    [53] Long X, Zhong Y X, Li R J et al. 3-D surface integration in structured light 3-D scanning[J]. Journal of Tsinghua University (Science and Technology), 42, 477-480(2002).

    [54] Pan W, Zhao Y. New method of phase calculation of fringe projection measurement[J]. Journal of Shanghai Jiao Tong University, 37, 1068-1071(2003).

    [55] a neural network. Complex object 3D measurement based on phase-shifting,[J]. Optics Communications, 282, 2699-2706(2009).

    [56] Häusler G, Faber C, Olesch E. Deflectometry vs. interferometry[J]. Proceedings of SPIE, 8788, 87881C(2013).

    [57] Su P, Wang S S, Khreishi M et al. SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments[J]. Proceedings of SPIE, 8450, 84500W(2012).

    [58] Tang Y, Su X Y, Liu Y K et al. 3D shape measurement of the aspheric mirror by advanced phase measuring deflectometry[J]. Optics Express, 16, 15090-15096(2008).

    [59] Tang Y, Su X Y, Wu F et al. A novel phase measuring deflectometry for aspheric mirror test[J]. Optics Express, 17, 19778-19784(2009).

    [60] Zhao W C, Su X Y, Liu Y K et al. Testing an aspheric mirror based on phase measuring deflectometry[J]. Optical Engineering, 48, 103603(2009).

    [61] Tang Y, Su X Y, Liu Y K et al. Three-dimensional shape measurement of aspheric mirror based on fringe reflection[J]. Acta Optica Sinica, 29, 965-969(2009).

    [62] Wan X J, Bin B Y, Xie S P et al. Development of an integrated freeform optics measurement system based on phase measuring deflectometry[J]. Proceedings of SPIE, 1084, 1084710(2018). http://www.researchgate.net/publication/329602557_Development_of_an_integrated_freeform_optics_measurement_system_based_on_phase_measuring_deflectometry

    [63] Guo C F, Hu A D. Three-dimensional shape measurement of aspheric mirrors with null phase measuring deflectometry[J]. Optical Engineering, 58, 104102(2019). http://www.researchgate.net/publication/336450891_Three-dimensional_shape_measurement_of_aspheric_mirrors_with_null_phase_measuring_deflectometry

    [64] Yuan T. Study on fringe-reflection optical surface shape measurement technology for large aspheric mirror[D]. Beijing: University of Chinese Academy of Sciences(2016).

    [65] MacGovern A J, Wyant J C. Computer generated holograms for testing optical elements[J]. Applied Optics, 10, 619-624(1971).

    [66] Kino M, Kurita M. Interferometric testing for off-axis aspherical mirrors with computer-generated holograms[J]. Applied Optics, 51, 4291-4297(2012). http://www.ncbi.nlm.nih.gov/pubmed/22772100

    [67] Su P, Kang G G, Tan Q F et al. Estimation and optimization of computer-generated hologram in null test of freeform surface[J]. Chinese Optics Letters, 7, 1097-1100(2009). http://www.opticsjournal.net/Articles/Abstract?aid=OJ0912180000642x5A8D

    [68] Shen H, Zhu R H, Gao Z S et al. Design and fabrication of computer-generated holograms for testing optical freeform surfaces[J]. Chinese Optics Letters, 11, 032201(2013). http://www.opticsjournal.net/Articles/Abstract?aid=OJ130224000006HeKgNj

    [69] Huang Y, Ma J, Zhu R H et al. Investigation of measurement uncertainty of optical freeform surface based on computer-generated hologram[J]. Acta Optica Sinica, 35, 1112007(2015).

    [70] Zhu D Y, Zhang X J. Design of high-precision phase computer-generated-hologram[J]. Acta Optica Sinica, 35, 0712002(2015).

    [71] Zeng X F, Zhang X J, Xue D L et al. Mapping distortion correction in freeform mirror testing by computer-generated hologram[J]. Applied Optics, 57, F56-F61(2018). http://www.researchgate.net/publication/329218973_Mapping_distortion_correction_in_freeform_mirror_testing_by_computer-generated_hologram

    [72] Chaudhuri R, Papa J C, Rolland J P. System design of a single-shot reconfigurable null test using a spatial light modulator for freeform metrology[J]. Optics Letters, 44, 2000-2003(2019).

    [73] Hao Q, Wang S P, Hu Y. Design method of a liquid crystal based computer-generated hologram for freeform surface measurement. [C]∥2017 22nd Microoptics Conference (MOC), November 19-22, 2017, Tokyo, Japan. New York: IEEE, 244-245(2017).

    [74] Hu Y, Wang S P, Wang Z et al. Liquid crystal hologram for cylinder lens measurement[J]. Proceedings of SPIE, 1118, 111850W(2019).

    [75] Peterhansel S, Pruss C, Osten W. Phase errors in high line density CGH used for aspheric testing: beyond scalar approximation[J]. Optics Express, 21, 11638-11651(2013). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-21-10-11638

    [76] Ma J, Pruss C, Häfner M et al. Systematic analysis of the measurement of cone angles using high line density computer-generated holograms[J]. Optical engineering, 50, 055801(2011).

    [77] Xie Y J, Mao X L, Li J P et al. Optical design and fabrication of an all-aluminum unobscured two-mirror freeform imaging telescope[J]. Applied Optics, 59, 833-840(2020). http://www.researchgate.net/publication/338001248_the_optical_design_and_fabrication_of_an_allaluminiumunobscured_two-mirror_freeformimaging_telescope

    [78] Pang Z H, Feng L J, Ding J T et al. Design and fabrication of CGH for 820 mm diameter tertiary mirror surface figure testing without center hole[J]. Proceedings of SPIE, 1084, 1084019(2019). http://www.researchgate.net/publication/330609372_Design_and_fabrication_of_CGH_for_820mm_diameter_tertiary_mirror_surface_figure_testing_without_center_hole

    [79] Li S J, Zhang J, Liu W G et al. Measurement investigation of an off-axis aspheric surface via a hybrid compensation method[J]. Applied Optics, 57, 8220-8227(2018). http://www.ncbi.nlm.nih.gov/pubmed/30461771

    [80] Gan Z H, Peng X Q, Chen S Y et al. Fringe discretization and manufacturing analysis of a computer-generated hologram in a null test of the freeform surface[J]. Applied Optics, 57, 9913-9921(2018). http://www.researchgate.net/publication/329192560_fringe_discretization_and_manufacturing_analysis_of_a_computer-generated_hologram_in_a_null_test_of_the_freeform_surface

    [81] Gan Z H, Peng X Q, Chen S Y. Key technology of CGH for complex surface measurement and calibration[J]. China Metrology, 6, 80-85(2019).

    [82] He Y W, Hou X, Wu F et al. Analysis of spurious diffraction orders of computer-generated hologram in symmetric aspheric metrology[J]. Optics Express, 25, 20556-20572(2017).

    [83] Liu H L, Zhu Q D, Hao Q et al. Design of novel part-compensating lens used in aspheric testing[J]. Proceedings of SPIE, 5253, 480-484(2003).

    [84] Sullivan J J, Greivenkamp J E. Design of partial nulls for testing of fast aspheric surfaces[J]. Proceedings of SPIE, 6671, 66710W(2007). http://proceedings.spiedigitallibrary.org/conference-proceedings-of-spie/6671/66710W/Design-of-partial-nulls-for-testing-of-fast-aspheric-surfaces/10.1117/12.734874.full

    [85] Liu D, Yang Y Y, Luo Y J et al. Non-null interferometric aspheric testing with partial null lens and reverse optimization[J]. Proceedings of SPIE, 7426, 74260M(2009).

    [86] Fuerschbach K, Thompson K P, Rolland J P. Interferometric measurement of a concave, φ-polynomial, Zernike mirror[J]. Optics Letters, 39, 18-21(2014).

    [87] Dou Y M, Yuan Q, Gao Z S et al. Partial null astigmatism-compensated interferometry for a concave freeform Zernike mirror[J]. Journal of Optics, 20, 065702(2018). http://adsabs.harvard.edu/abs/2018JOpt...20f5702D

    [88] Zhang L, Zhou S, Li D et al. Model-based adaptive non-null interferometry for freeform surface metrology[J]. Chinese Optics Letters, 16, 081203(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ180801000024Zw3y6B

    [89] Zhang L, Zhou S, Li J S et al. Model calibration by multi-null constraint for an optical freeform surface adaptive interferometer[J]. Applied Optics, 59, 726-734(2020). http://www.researchgate.net/publication/337961745_Model_calibration_by_multi-null_constraint_for_opticalfreeform_surfaces_adaptive_interferometer

    [90] Zhang L, Li C, Huang X L et al. Compact adaptive interferometer for unknown freeform surfaces with large departure[J]. Optics Express, 28, 1897-1913(2020).

    [91] Zhang L, Li D, Liu Y et al. Flexible interferometry for optical aspheric and free form surfaces[J]. Optical Review, 24, 677-685(2017). http://link.springer.com/article/10.1007/s10043-017-0363-6

    [92] Liu D, Shi T, Zhang L et al. Reverse optimization reconstruction of aspheric figure error in a non-null interferometer[J]. Applied Optics, 53, 5538-5546(2014).

    [93] Tian C, Yang Y Y, Zhuo Y M. Generalized data reduction approach for aspheric testing in a non-null interferometer[J]. Applied Optics, 51, 1598-1604(2012). http://europepmc.org/abstract/MED/22505080

    [94] Shi T, Liu D, Zhang L et al. Reverse optimization reconstruction method for aspheric testing in a nonnull interferometer[J]. Acta Optica Sinica, 34, 0612007(2014).

    [95] Shi T, Zang Z M, Liu D et al. Retrace error correction for non-null testing of optical aspheric surface[J]. Acta Optica Sinica, 36, 0812006(2016).

    [96] Shi T, Liu D, Zhou Y H et al. Practical retrace error correction in non-null aspheric testing: a comparison[J]. Optics Communications, 383, 378-385(2017).

    [97] Hao Q, Wang S P, Hu Y et al. Virtual interferometer calibration method of a non-null interferometer for freeform surface measurements[J]. Applied Optics, 55, 9992-10001(2016). http://europepmc.org/abstract/MED/27958404

    [98] Zang Z M, Liu D, Bai J et al. Misalignment correction for free-form surface in non-null interferometric testing[J]. Optics Communications, 437, 204-213(2019). http://www.sciencedirect.com/science/article/pii/S0030401818310721

    [99] Zhang L, Zhou S, Li J S et al. Deep neural network based calibration for freeform surface misalignments in general interferometer[J]. Optics Express, 27, 33709-33723(2019). http://www.ncbi.nlm.nih.gov/pubmed/31878433

    [100] Zhang L, Li C, Zhou S et al. Enhanced calibration for freeform surface misalignments in non-null interferometers by convolutional neural network[J]. Optics Express, 28, 4988-4999(2020). http://www.researchgate.net/publication/338851937_Enhanced_calibration_for_freeform_surface_misalignments_in_non-null_interferometers_by_convolutional_neural_network

    [101] Chow W W, Lawrence G N. Method for subaperture testing interferogram reduction[J]. Optics Letters, 8, 468-470(1983).

    [102] Kuechel M F. Interferometric measurement of rotationally symmetric aspheric surfaces[J]. Proceedings of SPIE, 1031, 103160Q(2007).

    [103] Hou X, Wu F, Yang L et al. Full-aperture wavefront reconstruction from annular subaperture interferometric data by use of Zernike annular polynomials and a matrix method for testing large aspheric surfaces[J]. Applied Optics, 45, 3442-3455(2006).

    [104] Hou X, Wu F, Yang L et al. Experimental study on measurement of aspheric surface shape with complementary annular subaperture interferometric method[J]. Optics Express, 15, 12890-12899(2007).

    [105] Chen S Y, Li S Y, Dai Y F et al. Experimental study on subaperture testing with iterative stitching algorithm[J]. Optics Express, 16, 4760-4765(2008).

    [106] Wen Y F, Cheng H B, Tam H et al. Modified stitching algorithm for annular subaperture stitching interferometry for aspheric surfaces[J]. Applied Optics, 52, 5686-5694(2013). http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-52-23-5686

    [107] Zhang L, Liu D, Shi T et al. Aspheric subaperture stitching based on system modeling[J]. Optics Express, 23, 19176-19188(2015). http://www.ncbi.nlm.nih.gov/pubmed/26367580/

    [108] Zhang L, Tian C, Liu D et al. Non-null annular subaperture stitching interferometry for steep aspheric measurement[J]. Applied Optics, 53, 5755-5762(2014).

    [109] Fleig J F, Murphy P E. Measuring a nanometer-precision asphere with subaperture stitching interferometry. [C]∥Frontiers in Optics, Rochester, New York. Washington, D. C.: OSA, OFTuA6(2006).

    [110] Murphy P, Fleig J, Forbes G et al. Subaperture stitching interferometry for testing mild aspheres[J]. Proceedings of SPIE, 6293, 62930J(2006). http://spie.org/x648.html?product_id=680473

    [111] Supranowitz C, Lormeau J P, Maloney C et al. Freeform metrology using subaperture stitching interferometry[J]. Proceedings of SPIE, 1015, 101510D(2016). http://proceedings.spiedigitallibrary.org/data/Conferences/SPIEP/90398/101510D.pdf

    [112] Supranowitz C, Maloney C, Murphy P et al. Enhanced resolution and accuracy of freeform metrology through Subaperture Stitching Interferometry[J]. Proceedings of SPIE, 1044, 1044818(2017). http://adsabs.harvard.edu/abs/2017SPIE10448E..18S

    [113] Murphy P, Supranowitz C. Freeform testability considerations for subaperture stitching interferometry[J]. Proceedings of SPIE, 11175, 111750Z(2019).

    [114] Hyun S, Je S, Kim G H. High precision interferometric measurement of freeform surfaces from the well-defined sub-aperture surface profiles[J]. Proceedings of SPIE, 1117, 111752B(2019). http://www.researchgate.net/publication/337303012_High_precision_interferometric_measurement_of_freeform_surfaces_from_the_well-defined_sub-aperture_surface_profiles

    [115] Yan L S, Wang X K, Zheng L G et al. Experimental study on subaperture testing with iterative triangulation algorithm[J]. Optics Express, 21, 22628-22644(2013).

    [116] Chen S Y, Xue S, Dai Y F et al. Subaperture stitching test of large steep convex spheres[J]. Optics Express, 23, 29047-29058(2015).

    [117] Chen S Y, Wu C C, Tie G P et al. Stitching test of large flats by using two orthogonally arranged wavefront interferometers[J]. Applied Optics, 56, 9193-9198(2017). http://europepmc.org/abstract/MED/29216089

    [118] Liu D, Zhou Y H, Bai J et al. Aspheric and free-form surfaces test with non-null sub-aperture stitching[J]. Proceedings of SPIE, 1002, 100210N(2016).

    [119] Zang Z M, Bai J, Liu D et al. Interferometric measurement of freeform surfaces using irregular subaperture stitching[J]. Measurement Science and Technology, 31, 055202(2020). http://iopscience.iop.org/article/10.1088/1361-6501/ab3be3

    [120] Garbusi E, Pruss C, Liesener J et al. New technique for flexible and rapid measurement of precision aspheres[J]. Proceedings of SPIE, 6616, 661629(2007). http://spie.org/Publications/Proceedings/Paper/10.1117/12.727898

    [121] Baer G, Schindler J, Pruss C et al. Fast and flexible non-null testing of aspheres and free-form surfaces with the tilted-wave-interferometer[J]. International Journal of Optomechatronics, 8, 242-250(2014). http://www.tandfonline.com/doi/abs/10.1080/15599612.2014.942925

    [122] Garbusi E, Pruss C, Osten W. Interferometer for precise and flexible asphere testing[J]. Optics Letters, 33, 2973-2975(2008).

    [123] Garbusi E, Osten W. Perturbation methods in optics: application to the interferometric measurement of surfaces[J]. Journal of the Optical Society of America A, 26, 2538-2549(2009). http://www.opticsinfobase.org/josaa/abstract.cfm?uri=josaa-26-12-2538

    [124] Baer G, Garbusi E, Lyda W et al. Automated surface positioning for a non-null test interferometer[J]. Optical engineering, 49, 095602(2010).

    [125] Fortmeier I, Stavridis M, Wiegmann A et al. Analytical Jacobian and its application to tilted-wave interferometry[J]. Optics Express, 22, 21313-21325(2014).

    [126] Baer G, Schindler J, Pruss C et al. Calibration of a non-null test interferometer for the measurement of aspheres and free-form surfaces[J]. Optics Express, 22, 31200-31211(2014).

    [127] Fortmeier I, Stavridis M, Wiegmann A et al. Evaluation of absolute form measurements using a tilted-wave interferometer[J]. Optics Express, 24, 3393-3404(2016).

    [128] Schindler J, Pruss C, Osten W. Simultaneous removal of nonrotationally symmetric errors in tilted wave interferometry[J]. Optical Engineering, 58, 074105(2019). http://proceedings.spiedigitallibrary.org/journals/OE/volume-58/issue-07/074105/Simultaneous-removal-of-nonrotationally-symmetric-errors-in-tilted-wave-interferometry/10.1117/1.OE.58.7.074105.full

    [129] Beisswanger R, Pruss C, Schober C et al. Tilted wave interferometer in common path configuration: challenges and realization[J]. Proceedings of SPIE, 1105, 110561G(2019). http://www.researchgate.net/publication/333936671_Tilted_wave_interferometer_in_common_path_configuration_challenges_and_realization

    [130] Shen H, Li J, Zhu R H et al. Design of non-null interferometer based on point source array for testing freeform surface[J]. Acta Optica Sinica, 33, 1222003(2013).

    [131] Shen H. Research on key techniques of tilted wave interferometer used in the measurement of freeform surfaces[D]. Nanjing: Nanjing University of Science and Technology(2014).

    [132] Shen H, Zhu R H, Chen L et al. Assessment of optical freeform surface error in tilted-wave-interferometer by combining computer-generated wave method and retrace errors elimination algorithm[J]. Optical Engineering, 54, 074105(2015). http://spie.org/Publications/Journal/10.1117/1.OE.54.7.074105

    [133] Li J, Shen H, Zhu R H. Method of alignment error control in free-form surface metrology with the tilted-wave-interferometer[J]. Optical Engineering, 55, 044101(2016). http://proceedings.spiedigitallibrary.org/data/Journals/OPTICE/935157/OE_55_4_044101.pdf?resultClick=1

    [134] Li J, Shen H, Zhu R H et al. Interferometry with flexible point source array for measuring complex freeform surface and its design algorithm[J]. Optics Communications, 417, 67-75(2018).

    [135] Li X L, Shen H, Li J et al. Optical path difference calibration method of optical fiber array point source generator in tilted-wave-interferometer[J]. Acta Optica Sinica, 38, 0512002(2018).

    [136] Lu Q. Point source generator for dynamic generation of ideal interference point source array[D]. Nanjing: Nanjing University of Science and Technology(2017).

    [137] Gao J M, Shen H, Li J et al. A flexible angle compensation method for freeform surface testing based on tip/tilt mirror[J]. Optics Communications, 444, 21-27(2019). http://www.sciencedirect.com/science/article/pii/S0030401819302433

    [138] Li J, Shen H, Wang J S et al. Common-path interferometry with tilt carrier for surface measurement of complex optics[J]. Applied Optics, 58, 1991-1997(2019). http://www.researchgate.net/publication/331575060_Common-path_interferometry_with_tilt_carrier_for_surface_measurement_of_complex_optics

    [139] Wang J S. Design and development of common-path interferometer for complex surface based on optical fiber array[D]. Nanjing: Nanjing University of Science and Technology(2019).

    Rihong Zhu, Yue Sun, Hua Shen. Progress and Prospect of Optical Freeform Surface Measurement[J]. Acta Optica Sinica, 2021, 41(1): 0112001
    Download Citation