• Photonics Research
  • Vol. 10, Issue 6, 1462 (2022)
Guoqing Jing1、†, Peipei Wang1、†, Haisheng Wu1、†, Jianjun Ren1, Zhiqiang Xie1, Junmin Liu2, Huapeng Ye3, Ying Li1, Dianyuan Fan1, and Shuqing Chen1、*
Author Affiliations
  • 1International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
  • 2College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
  • 3Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
  • show less
    DOI: 10.1364/PRJ.450564 Cite this Article Set citation alerts
    Guoqing Jing, Peipei Wang, Haisheng Wu, Jianjun Ren, Zhiqiang Xie, Junmin Liu, Huapeng Ye, Ying Li, Dianyuan Fan, Shuqing Chen. Neural network-based surrogate model for inverse design of metasurfaces[J]. Photonics Research, 2022, 10(6): 1462 Copy Citation Text show less
    References

    [1] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [2] X. G. Luo. Principles of electromagnetic waves in metasurfaces. Sci. China Phys. Mech. Astron., 45, 1-18(2015).

    [3] S. Chen, Z. Li, Y. Zhang, H. Cheng, J. Tian. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics. Adv. Opt. Mater., 6, 1800104(2018).

    [4] Y. Ke, S. Chen, W. Shu, H. Luo. Generation of perfect vector beams based on the combined modulation of dynamic and geometric phases. Opt. Commun., 446, 191-195(2019).

    [5] W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2018).

    [6] I. Tanriover, H. V. Demir. Broad-band polarization-insensitive all-dielectric metalens enabled by intentional off-resonance waveguiding at mid-wave infrared. Appl. Phys. Lett., 114, 043105(2019).

    [7] M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, F. Capasso. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett., 17, 1819-1824(2017).

    [8] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, F. Capasso. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [9] G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, S. Zhang. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [10] W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, T. Zentgraf. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun., 7, 11930(2016).

    [11] X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, X. Luo. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv., 2, e1601102(2016).

    [12] Q. Xiao, Q. Ma, T. Yan, L. W. Wu, C. Liu, Z. X. Wang, X. Wan, Q. Cheng, T. J. Cui. Orbital-angular-momentum-encrypted holography based on coding information metasurface. Adv. Opt. Mater., 9, 2002155(2021).

    [13] H. Tan, J. Deng, R. Zhao, X. Wu, G. Li, L. Huang, J. Liu, X. Cai. A free-space orbital angular momentum multiplexing communication system based on a metasurface. Laser Photon. Rev., 13, 1800278(2019).

    [14] Q. Mai, C. Wang, X. Wang, S. Cheng, M. Cheng, Y. He, J. Xiao, H. Ye, D. Fan, Y. Li, S. Chen. Metasurface based optical orbital angular momentum multiplexing for 100 GHz radio-over-fiber communication. J. Lightwave Technol., 39, 6159-6166(2021).

    [15] Z. Jin, D. Janoschka, J. Deng, L. Ge, P. Dreher, B. Frank, G. Hu, J. Ni, Y. Yang, J. Li, C. Yu, D. Lei, G. Li, S. Xiao, S. Mei, H. Giessen, F. zu Heringdorf, C. Qiu. Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight, 1, 5(2021).

    [16] J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [17] J. A. Fan. Freeform metasurface design based on topology optimization. MRS Bull., 45, 196-201(2020).

    [18] W. Cai, D. Zhu, Z. Liu, L. Raju, A. S. Kim. Building multifunctional metasystems via algorithmic construction. ACS Nano, 15, 2318-2326(2021).

    [19] C. Sitawarin, W. Jin, Z. Lin, A. W. Rodriguez. Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion [Invited]. Photon. Res., 6, B82-B89(2018).

    [20] K. Wang, J. Zhao, Q. Cheng, D. S. Dong, T. J. Cui. Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm. Sci. Rep., 4, 5935(2014).

    [21] A. C. Overvig, S. Shrestha, S. C. Malek, M. Lu, A. Stein, C. Zheng, N. Yu. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci. Appl., 8, 92(2019).

    [22] A. Arbabi, Y. Horie, M. Bagheri, A. Faraon. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

    [23] J. Tang, Z. Li, S. Wan, Z. Wang, C. Wan, C. Dai, Z. Li. Angular multiplexing nanoprinting with independent amplitude encryption based on visible-frequency metasurfaces. ACS Appl. Mater. Interfaces, 13, 38623-38628(2021).

    [24] H. Feng, Q. Li, W. Wan, J. H. Song, Q. Gong, M. L. Brongersma, Y. Li. Spin-switched three-dimensional full-color scenes based on a dielectric meta-hologram. ACS Photon., 6, 2910-2916(2019).

    [25] J. Jang, G. Y. Lee, J. Sung, B. Lee. Independent multichannel wavefront modulation for angle multiplexed meta-holograms. Adv. Opt. Mater., 9, 2100678(2021).

    [26] X. Shi, T. Qiu, J. Wang, X. Zhao, S. Qu. Metasurface inverse design using machine learning approaches. J. Phys. D, 53, 275105(2020).

    [27] Z. Liu, D. Zhu, S. P. Rodrigues, K. T. Lee, W. Cai. Generative model for the inverse design of metasurfaces. Nano Lett., 18, 6570-6576(2018).

    [28] R. Zhu, T. Qiu, J. Wang, S. Sui, C. Hao, T. Liu, Y. Li, M. Feng, A. Zhang, C. W. Qiu, S. Qu. Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning. Nat. Commun., 12, 2974(2021).

    [29] D. Xu, Y. Luo, J. Luo, M. Pu, Y. Zhang, Y. Ha, X. Luo. Efficient design of a dielectric metasurface with transfer learning and genetic algorithm. Opt. Mater. Express, 11, 1852-1862(2021).

    [30] M. Minkov, I. A. D. Williamson, L. C. Andreani, D. Gerace, B. Lou, A. Y. Song, T. W. Hughes, S. Fan. Inverse design of photonic crystals through automatic differentiation. ACS Photon., 7, 1729-1741(2020).

    [31] S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, A. W. Rodriguez. Inverse design in nanophotonics. Nat. Photonics, 12, 659-670(2018).

    [32] L. Jiang, X. Li, Q. Wu, L. Wang, L. Gao. Neural network enabled metasurface design for phase manipulation. Opt. Express, 29, 2521-2528(2021).

    [33] S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, H. Zhang. A deep learning approach for objective-driven all-dielectric metasurface design. ACS Photon., 6, 3196-3207(2019).

    [34] R. Zhu, T. Qiu, J. Wang, S. Sui, Y. Li, M. Feng, H. Ma, S. Qu. Multiplexing the aperture of a metasurface: inverse design via deep-learning-forward genetic algorithm. J. Phys. D, 53, 455002(2020).

    [35] W. He, M. Tong, Z. Xu, Y. Hu, X. Cheng, T. Jiang. Ultrafast all-optical terahertz modulation based on an inverse-designed metasurface. Photon. Res., 9, 1099-1108(2021).

    [36] Q. Zhang, H. Yu, M. Barbiero, B. Wang, M. Gu. Artificial neural networks enabled by nanophotonics. Light Sci. Appl., 8, 42(2019).

    [37] I. Tanriover, W. Hadibrata, K. Aydin. Physics-based approach for a neural networks enabled design of all-dielectric metasurfaces. ACS Photon., 7, 1957-1964(2020).

    [38] P. Xu, H. W. Tian, W. X. Jiang, Z. Z. Chen, T. Cao, C. W. Qiu, T. J. Cui. Phase and polarization modulations using radiation-type metasurfaces. Adv. Opt. Mater., 9, 2100159(2021).

    [39] X. Jiang, H. Yuan, D. Chen, Z. Zhang, T. Du, H. Ma, J. Yang. Metasurface based on inverse design for maximizing solar spectral absorption. Adv. Opt. Mater., 9, 2100575(2021).

    [40] C. Lu, Z. Liu, Y. Wu, Z. Xiao, D. Yu, H. Zhang, C. Wang, X. Hu, Y. C. Liu, X. Liu, X. Zhang. Nanophotonic polarization routers based on an intelligent algorithm. Adv. Opt. Mater., 8, 1902018(2020).

    [41] S. Chen, Z. Xie, H. Ye, X. Wang, Z. Guo, Y. He, Y. Li, X. Yuan, D. Fan. Cylindrical vector beam multiplexer/demultiplexer using off-axis polarization control. Light Sci. Appl., 10, 22(2021).

    [42] W. Shu, Y. Liu, Y. Ke, X. Ling, Z. Liu, B. Huang, H. Luo, X. Yin. Propagation model for vector beams generated by metasurfaces. Opt. Express, 24, 21177-21189(2016).

    Guoqing Jing, Peipei Wang, Haisheng Wu, Jianjun Ren, Zhiqiang Xie, Junmin Liu, Huapeng Ye, Ying Li, Dianyuan Fan, Shuqing Chen. Neural network-based surrogate model for inverse design of metasurfaces[J]. Photonics Research, 2022, 10(6): 1462
    Download Citation