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Metasurfaces composed of spatially arranged ultrathin subwavelength elements are promising photonic devices
for manipulating optical wavefronts, with potential applications in holography, metalens, and multiplexing com-
munications. Finding microstructures that meet light modulation requirements is always a challenge in designing
metasurfaces, where parameter sweep, gradient-based inverse design, and topology optimization are the most
commonly used design methods in which the massive electromagnetic iterations require the design computational
cost and are sometimes prohibitive. Herein, we propose a fast inverse design method that combines a physics-
based neural network surrogate model (NNSM) with an optimization algorithm. The NNSM, which can generate
an accurate electromagnetic response from the geometric topologies of the meta-atoms, is constructed for electro-
magnetic iterations, and the optimization algorithm is used to search for the on-demand meta-atoms from the
phase library established by the NNSM to realize an inverse design. This method addresses two important prob-
lems in metasurface design: fast and accurate electromagnetic wave phase prediction and inverse design through a
single phase-shift value. As a proof-of-concept, we designed an orbital angular momentum (de)multiplexer based
on a phase-type metasurface, and 200 Gbit/s quadrature-phase shift-keying signals were successfully transmitted
with a bit error rate approaching 1.67 × 10−6. Because the design is mainly based on an optimization algorithm, it
can address the “one-to-many” inverse problem in other micro/nano devices such as integrated photonic circuits,
waveguides, and nano-antennas. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.450564

1. INTRODUCTION

Metasurfaces composed of spatially arranged micro/nano an-
tennas introduce abrupt phase changes to electromagnetic
waves through strong resonances of the meta-atoms [1–4],
and they have been applied to metalenses [5–8], holograms
[9–12], and multiplexing communication [13–16]. One of
the most significant challenges in metasurface design comes
from how to find meta-atoms with desired electromagnetic re-
sponse [17–20]. The traditional design process mainly includes
three steps: selecting the appropriate structure of meta-atoms,
sweeping the electromagnetic response of meta-atoms to obtain
the target geometrical parameters, and using meta-atoms ar-
ranged in arrays to form a metasurface [21–25]. These proc-
esses require numerous trial and error sessions, and the scale
and range of the sweeping drastically increase with the design
parameters [26]. For the sweeping, the target meta-atoms need
to fall within the sweep range of the initial structure, causing

the selection to be heavily dependent on the design parameters
and resulting in possible design limitations for specific electro-
magnetic waves [27,28].

To address these problems, various inverse design methods
have been proposed to predict the target meta-atoms according
to the desired electromagnetic responses [29]. The inverse de-
sign methods provide a new design strategy for generating non-
intuitive geometric structures and significantly improve the
design efficiency. These inverse design methods can be divided
as follows: adjoint gradient inverse optimization [30,31] and
deep learning inverse prediction [32–34]. The former strategy
utilizes the gradient descent approach to optimize and modify
the structural parameters according to the returned adjoint field
variables [35]. The implementation of this approach is limited
by the expensive full-wave simulation requirements, slow con-
vergence, and manufacturing difficulties owing to the massive
electromagnetic iteration, small step size, and non-intuitive
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structures. By contrast, the deep learning methods can signifi-
cantly reduce the computational cost by replacing the electro-
magnetic calculations with neural networks [36]. Using the
target electromagnetic response (such as the transmittance spec-
trum or reflectance spectrum) as the input, the trained neural
network model can predict the structures of the meta-atoms.
However, the neural network model usually yields the shape
and patterns of the meta-atoms as the output, which shows
some prediction errors in the inverse design [27], and the pre-
dicted meta-atoms are always irregular and require further treat-
ment for practical engineering. Moreover, there are two
additional technical challenges in the inverse designing of
phase-type metasurfaces [37]. (1) The phase value introduces
wavelength-dependent periodic changes, because of which the
phase spectrum usually contains irregular jumping discontinu-
ities, leading to difficulty in the convergence of the neural net-
work model during training. (2) It is difficult to obtain the
required phase spectrum of the meta-atoms in advance because
the modulation of the metasurface relies on the abrupt phase
change at a specific wavelength, and only a single phase-shift
value is involved in the design.

Combining the physics-based neural network and optimi-
zation algorithm, we constructed a physics-based neural
network surrogate model (NNSM) to predict the electromag-
netic responses of arbitrary manufacturable meta-atoms by
training small dataset meta-structure samples among the design
variables. This NNSM can replace the electromagnetic calcu-
lations of the geometric topologies of the meta-atoms and their
electromagnetic response, and significantly reduce the compu-
tational cost. Benefiting from the trained NNSM model, the
predicted results of the meta-atoms matched well with those
of the electromagnetic calculations outside the training set.
Therefore, the NNSM established a meta-atom library as a fast
pattern-searching dictionary, which provides an efficient tool
for deriving the corresponding meta-atoms through the pre-
dicted results. The optimization algorithm is used to search
for specific meta-structures that meet the light modulation
requirements from the library established by NNSM. The
meta-atom geometric topology is randomly generated by the
computer and sent to the neural network for prediction,
and the prediction results are screened following the rules of
natural evolution, where the results close to the design require-
ments are easier to retain. After multiple iterations, the optimi-
zation algorithm can search for on-demand meta-atoms,
realizing a fast and accurate inverse design. We show that
the inverse design process takes only a few seconds, and the
two important goals in designing phase-type metasurfaces are
accomplished: (1) the predicted meta-atoms can be tolerated
and directly applied to the metasurface without further treat-
ment, and (2) the on-demand meta-atoms can be inversely de-
signed using only one phase-shift value. As a proof-of-concept,
we designed an orbital angular momentum (OAM) (de)multi-
plexer based on a phase-type metasurface, and 200 Gbit/s
quadrature-phase shift-keying (QPSK) signals were successfully
transmitted with the bit error rate (BER) approaching
1.67 × 10−6 at the received optical power of −20.5 dBm.
This indicates that this physical-optimization algorithm
presents an effective solution for the “one-to-many” problem

(the same optical response can be derived from multiple
geometrical parameters) in the inverse design of a metasurface,
and it also has the ability to optimize the structure in multi-
parameter micro/nano devices.

2. PRINCIPLES AND METHODS

A. Geometry of Meta-Atoms and Optical Response
Spectrum
To collect sufficient training samples, the generic geometry of
the subwavelength structure on the top of a reflective substrate
was selected as the unit cell structure for the investigation. The
unit cells were composed of multiple layers. Here, we used gold
as the meta-atom, silica as the spacer, and gold above the silicon
wafer as the substrate. When the unit cells are illuminated with
light, the meta-atoms with different structures generate differ-
ent optical responses [38]. For the feasibility of manufacturing,
we fixed the height of the meta-atoms and selected the simplest
cuboid as the basic structure. As shown in Fig. 1(a), the design
parameters are defined as the length L, width W , and rotation
angle θ of the meta-atoms. By changing these design parame-
ters, we can control the phase-shift modulation values of the
meta-atoms to modulate the light field further. To monitor
the optical response of the unit cell comprehensively, we mea-
sured its reflectance spectrum and phase spectra in x and y
polarization directions with a bandwidth from 1300 nm to
1900 nm using the finite-difference time-domain (FDTD)
method. Considering that, in some applications, optical modu-
lation is only required at a specific wavelength, we discretized
these spectra and selected 21 points on each spectrum for the
investigations. Therefore, the optical response spectrum data
consisted of three parts: phase spectrum in x polarization, phase
spectrum in y polarization, and reflectance spectrum, with a
total of 63 data points, as shown in Fig. 1(b).

B. Physics-Based NNSM
The designed NNSM is shown in Fig. 2, and its basic frame-
work is a U-net convolutional neural network (CNN), which
contains five convolutional layers, four transposed convolu-
tional layers, and three fully connected hidden layers with
2304, 512, and 128 neurons, respectively. The specific archi-
tecture and hyperparameters of the U-net CNN are presented
in Appendix A.1. The input layer is an image that matches the
geometric topologies of the meta-atoms, and the output layer
has 63 neurons, corresponding to the optical response spectrum
that needs to be predicted. The data transmission between two
adjacent convolution layers satisfies

Fig. 1. (a) Unit cell of reflection-type metasurface. (b) Optical
response spectrum data simulated using the FDTD method.
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the bias value, and f is the nonlinear activation function.
We add a pooling layer after each conventional operation to
reduce the dimensions of the feature images and network
parameters. With rounds of convolution and pooling opera-
tions, the intrinsic features can be learned from the input im-
age. To reduce the number of training samples, we introduced
data enhancement into a traditional CNN. When performing
the convolution and pooling operations, each output result was
recorded. Once the network completes all the convolution op-
erations, the previously recorded convolution results are con-
catenated to the same size deconvolution layer as the input
of the next layer to form a U-net structure. Finally, the U-
net is followed by several fully connected layers to obtain
the desired outputs. The transmission relationship in the adja-
cent fully connected layers can be expressed as follows:
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where xmj denotes the jth neuron of the mth layer, wm�1
ij rep-

resents the weight from the jth neuron of the mth layer to the
ith neuron of the next layer. Here, Leaky–Relu (a � 0.1) is
used as the activation function to perform the nonlinear acti-
vation on the output of the convolutional layer and the trans-
posed convolutional layer. In the fully connected layers
(flattened layers), tanh is used as the activation function, which
can be expressed as follows:

tanh�yj� �
1 − exp�−2yj�P
j1� exp�2yj�

, (3)

where yj denotes the jth output neuron. A dropout function
with rate of 0.5 is employed on the back convolutional layers
to avoid overfitting. The mean squared error (MSE) is used as
the loss function, which can be calculated as follows:

MSE�f �X , θ�,Y � � 1

m

Xm
i�1

�yi − ŷi�2, (4)

where yi denotes the ideal output, ŷi is the predicted output,
and m is the neuron number of the output layer. In the training
process, the adaptive moment estimation (Adam) optimizer is
introduced to update the weight and bias parameters to min-
imize the loss function.

C. Inverse Design Principle Based on the NNSM and
Intelligent Optimization Algorithm
To design the on-demand meta-atoms, we propose an inverse
design strategy, the schematic of which is shown in Fig. 3, con-
sisting of an NNSM based on the U-net and an intelligent op-
timization algorithm. The basic idea of intelligent optimization
algorithms comes from traditional heuristic search algorithms,
such as genetic algorithms and particle swarm optimization al-
gorithms [39,40]. By imitating the evolution process of organ-
isms in nature, the best design parameters can be found in the
search space (the principle and parameters of the optimization
algorithm are shown in Appendix A.2). Here, the unit cell of a
reflection-type metasurface containing design parameters is
known as an individual, which contains three variables: length,
width, and rotation angle. Considering the actual manufactur-
ing accuracy and the sensitivity of the device to the parameters,

Fig. 2. Diagram of physics-based NNSM.

Fig. 3. Schematic of the inverse design process of the intelligent
optimization algorithm.
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we selected the length L and widthW to change from 50 nm to
500 nm with a length interval of Δl � 5 nm, and the angle
changing from 0° to 180° with Δθ � 5°; therefore, each indi-
vidual has a total of 90 × 90 × 36 � 291,600 different combi-
nations. To evaluate the inverse design performance of the
intelligent optimization algorithm, we use the fitness score
to calculate the degree of matching between the predicted op-
tical responses and the optimal values of individuals, and the
score increases with the similarity. Considering the application
background of the meta-device, we hope that the NNSM will
put more effort into fitting the phase values of the x and y polar-
izations during the optimization process and will utilize differ-
ent proportions of weighting to calculate the overall score. In
particular, the phases in the Ex and Ey directions and reflectivity
are weighted by 0.4, 0.4, and 0.2, respectively, and the final
score is the sum of these three scores. Here, we select 1000
individuals with random design parameters as a population
and calculate the fitness value of each individual in the initial
process; thereafter, the NNSM is used to calculate the optical
response results. In comparison with complex electromagnetic-
based calculations, the trained NNSM can quickly obtain re-
sults within a few milliseconds, which saves significant amounts
of time and computational cost. After the fitness score evalu-
ation, the discriminator will screen out the individual with the
highest fitness score in the population and determine whether it
meets the threshold condition. If the fitness score does not meet
the threshold, individuals with higher scores will be selected for
cross-reproduction and gene mutation to produce the next gen-
eration, thereby performing multiple iterations. Here, the
crossover and mutation rates are set as 0.8 and 0.1, respectively.
According to these steps, we complete the entire selection pro-
cess using the roulette-wheel selection method. Once the fitness

value meets the set threshold condition, the search optimization
process is terminated, and the optimal design parameters are
output for further manufacturing.

3. RESULTS AND ANALYSIS

A. Prediction Results of NNSM
The constructed NNSMmodel was used as a tool to predict the
optical response to accelerate the electromagnetic calculation
process. When the design parameters of the meta-atom are
input to the neural network as a geometric image, the neural
network can promptly provide a predicted optical response
spectrum. According to the range of meta-atom design param-
eters (W ∈ �50, 500�,L ∈ �50,500�, θ ∈ �0°, 180°�), we selected
15, 15, and 10 data points for three dimensions, respectively,
and a total of 2250 samples were obtained, of which 2000 were
used for training and the remaining 250 were used for valida-
tion. The training data are used to generate the gradients and
optimize weights, and the validation data are used to verify
whether the neural network model has learned the physical
mapping relationship between the input and ideal output.
Figure 4(a) shows the change trend of the loss function of
the validation set during the training process. It shows that
the predicted spectrum gradually overlaps with the actual op-
tical response spectrum, and the MSE is only 0.02 with iter-
ations reaching 3 × 104, and the average accuracy of the
prediction results is 0.952, indicating that the NNSM has
an excellent spectrum prediction ability. Furthermore, we ran-
domly selected a meta-structure in the validation set to verify
the prediction results of NNSM, as illustrated in Figs. 4(b)–
4(d), which almost perfectly coincides with the simulated spec-
trum. In addition, it can be noticed that the jump discontinuity

Fig. 4. Predicted results of NNSM. (a) Loss curve as a function of training iteration. (b) Phase spectrum in x polarization. (c) Phase spectrum in y
polarization. (d) Reflectance spectrum.
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points in the phase spectrum have also been accurately
predicted, indicating that the model has high generalizability
and has learned the physics-based mapping relationship
between input and output.

B. Meta-Atoms Inverse Design and Fabrication
Using the inverse design model, we can arrange the searched
meta-atoms into a metasurface according to the modulation re-
quirements [41]. As a proof-of-concept, we designed an OAM
mode modulator, which can be used as a mode (de)multiplexer
and employed for OAM communication [42]. In this study, we
employed a metasuface with transmission phase modulation to
realize OAM (de)multiplexing. For the phase modulation of
�0, 2π�, we selected eight points in a phase period, which were
−3π∕4, −π∕2, −π∕4, 0, π∕4, π∕2, 3π∕4, and π. Because the
OAM mode is independent of the polarization dimension (the
topological charge l is used to represent the OAM mode), to
improve the applicability of the OAM (de)multiplexer, we
designed it to independently respond to the x and y polariza-
tions simultaneously. For this task, we need to find a total of
8 × 8 � 64 phase points to achieve simultaneous phase control
of the x and y polarizations. Because the phase points in the x
and y directions perform a symmetrical distribution, we only
need to find 36 different meta-atoms to meet the aforemen-
tioned phase modulation requirements. Using the presented in-
verse design model, we searched the structural parameters of
these 36 special meta-atoms, and the results are displayed in

Fig. 5(a). For instance, for a modulation requirement with a
phase value of π∕2 in x polarization and a phase value of π∕4
in y polarization, the optimal design parameters of meta-atoms
can be calculated by evaluating the maximum fitness score.
Following this procedure, the meta-atoms that meet all the
modulation phase requirements can be obtained and arranged
into a complete metasurface. Because NNSM is used to replace
the FDTD to calculate the optical response of meta-atoms,
there are specific errors in the phase values between the inverse
model prediction and the FDTD-based calculation [see Fig. 5
(a)], but the errors are tolerated in the metasurface-based phase
modulation for OAM mode communications.

For the arranged metasurface OAM mode (de)multiplexer,
we used the standard electron beam lithography (EBL; EBPG
5150) to fabricate it (see Appendix A.3 for manufacturing de-
tails), and the scanning electron microscopy (SEM) image of
the fabricated metasurface is shown in Fig. 5(b). The fabricated
metasurface can, thereafter, be utilized to modulate the vortex
beams for OAM mode (de)multiplexing. For the mode multi-
plexer, the Gaussian beams with incident angles of −10° and
−20° in the x polarization, and �10° and �20° in the y polari-
zation projected on the metasurface, can generate coaxial vortex
beams with OAMmodes of�1,�3,�2, and�4, respectively.
From the far-field transmission results shown in Fig. 5(c), the
generated vortex beams are consistent with the theory. In ad-
dition, the measurement results of these four vortex beams after
passing through the cylindrical lens (C-lens) show that the

Fig. 5. (a) Comparison between the predicted results by the inverse design model and the ideal results calculated by FDTD method. (b) SEM
image of the fabricated metasurfaces. (c) First line represents the intensity distributions of vortex beams with different OAM modes generated by
Gaussian beam with different incident angles and polarization states, and the second line represents the intensity distributions of vortex beams after
passing through the C-lens.
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fringe number is equal to the carried OAM mode, indicating
that the proposed inverse design model can accurately design
the corresponding metasurface and provide an effective scheme
for the design of high-performance micro/nano photonic devi-
ces. For the demultiplexer, the coaxial input vortex beams can
be diffracted to different spatial positions by the same metasur-
face, and the OAM modes are degenerated into a Gaussian
mode, thereby realizing OAM mode demultiplexing.

C. OAM Multiplexing Communication
To confirm the feasibility of the designed metasurface, we con-
structed an OAM mode-division multiplexing link and em-
ployed the designed OAM mode multiplexer/demultiplexer
to perform channel multiplexing/demultiplexing (details of
the communication link are provided in Appendix A.4).
Figure 6 shows the experimental results. Here, the transmitter
generates four OAM mode channels with modes of �1, �2,
�3, and �4 and realizes coaxial multiplexing. After 1 m free-
space transmission, the four vortex beams are demultiplexed by
the demultiplexer and converted to original digital signals. By
using a real-time digital signal analyzer (DSA) and processing it
offline in a computer, the four output electrical waveforms can
be recorded, and the information can be restored. The mea-
sured BERs at different optical received powers are shown in
Fig. 6(a). It is observed that the BERs of all the OAM channels
are below the forward-error-correction (FEC) threshold
(3.8 × 10−3) for the received optical power of −20 dBm, indi-
cating that the OAM multiplexing link possesses low signal
cross talk. Figure 6(b) shows the signal and noise powers in
this OAM multiplexing link, where the signal power is listed

on the diagonal of the matrix, and the other OAM mode chan-
nels are the noise sources of the signal channel. After calcula-
tion, the optical signal-to-noise ratios corresponding to the
OAM channels with l � �2, �4, �1, and �3 are −19.95,
−20.01, −23.41, and −18.62 dB, demonstrating that the
OAM beam multiplexing link possesses a low mode cross talk.
Constellations of the recovered QPSK signals at different re-
ceived powers are shown in Fig. 6(c); when the received
power is 20 dBm, the constellation points converge very well,
and there is almost no cross talk. As the received power
decreases, the constellation points are more likely to overlap
and induce the BERs to increase. However, even if the received
power is reduced to −24.5 dBm, the BERs of the correspond-
ing channels are still greater than the FEC, implying that the
inverse-designed metasurface has satisfactory multiplexing and
demultiplexing ability.

4. DISCUSSION

The inverse prediction of the meta-atom phase is always a sig-
nificant issue that needs to be addressed in metasurface design.
Because the phase changes periodically with the working wave-
length, the corresponding phase spectrum curve will have
abrupt spikes. In comparison with traditional inverse design
methods that utilize smooth data distribution (transmittance
spectrum or reflectance spectrum) as training samples, the neu-
ral network model trained by the phase spectrum is more dif-
ficult to converge. In the previous neural network-based phase
inverse design, the inputs are generally the geometric parame-
ters of meta-atoms, and the intrinsic geometric information is

Fig. 6. Results of metasurfaces-based four channels OAM multiplexing communication. (a) BER as a function of received power for different
OAMmodes. (b) Signal and noise powers corresponding to OAMmultiplexing. (c) Constellations of different channels at received optical powers of
20 dBm and 24.5 dBm.
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easily lost because only a few geometric parameters participate
in the training process. Here, the input is set as the meta-atom
geometry images that contain more feature information, and
this can make the prediction results easier to match with the
truth spectrum. By designing an NNSM to train the samples,
the model has a good generalization capacity with less training
samples. Generally, as a data-driven simulator, the prediction
performance increases with the number of sample data, which
will become increasingly accurate in finding the implicit inher-
ent connections between meta-atom structures and their opti-
cal spectrum response. However, more samples require more
collection time; thus, there is a trade-off when selecting the
number of samples.

The proposed inverse design model consists of two parts,
optimization algorithm and NNSM, where the optimization
algorithm is used to screen the optimal structure, and the
NNSM is used as a full-wave simulator. Here, we use the
genetic algorithm for structural optimization, which can be re-
placed by other algorithms, such as the ant colony algorithm,
particle swarm algorithm, and gradient-based algorithm.
Among them, the gradient-based algorithm only needs a few
iterations to obtain a better nanostructure [35], which can
be used as a potential alternative to shorten the iterative calcu-
lation time. But it is worth noting that, in these optimization
algorithms, complex full-wave simulations are usually required,
and the constructed NNSM can still be used as a simulator to
further reduce the computation time. For NNSM, we select
CNN as the basic architecture. Compared with other full-wave
simulation networks, such as the predicting neural network
(PNN) [33], the U-net CNN-based NNSM designed in this
work has two main advantages. (1) Benefiting from the con-
nection between the convolution layer and deconvolution layer,
the NNSM can extract deeper feature information from the
nanostructure patterns, making it well predict the spectrum
with phase mutations. (2) By splicing the output information
of the forward convolutional layers into the input of deconvolu-
tional layers in the later part of the model, the NNSM can per-
form data enhancement on feature information, and it still has
strong robustness and generalization ability under the training
of less samples.

To further demonstrate the powerful phase prediction abil-
ity of NNSM at multiple wavelengths, we use the proposed
inverse design model to optimize the structure of meta-atoms
with constant phase response in the wavelength range from
1500 nm to 1600 nm, and we further design a broadband
OAM generator. By setting the optimization constraint that
the phase response of meta-atoms in the wavelength range from
1500 nm to 1600 nm satisfies φx − φy � π, a meta-atom with
length L � 260 nm, width W � 410 nm, and rotation angle
Δθ � 0° is obtained. Under the geometric phase modulation
[13], by rotating this meta-atom to different degrees and then
arranging them, an OAM generator with broadband response
can be obtained, which can be used for dense wavelength di-
vision multiplexing to further improve the capacity of OAM
communications. As a proof-of-principle, we simulated a
binary vortex grating that can simultaneously generate OAM
modes with topological charges of �1 and −1, where the pixel
size and area of the transverse simulation area are 64 × 64 and

51.2 μm × 51.2 μm. Figure 7 shows the test results of broad-
band response characteristics. The top row shows the far-field
light intensity distributions of right circularly polarized plane
waves with different working wavelengths (1500 nm,
1550 nm, 1600 nm) after passing the OAM generator. Further,
we detect the generated two OAM modes by projecting a vor-
tex beam with l � −1, and the results are shown in the second
row. It can be seen that the vortex beam with l � �1 on
the left is restored to a Gaussian beam, and the light spot
on the right is transformed into a vortex beam with l � −2.
At the same time, since the grating has different diffraction an-
gles for different wavelengths, there are slightly differences in
the positions of the far-field diffraction light spots between the
three wavelengths, which also verifies that the NNSM has
powerful phase prediction ability for multiple wavelengths.

The inverse design model is based on the accurate and fast
prediction of NNSM. Unlike previous methods that directly pre-
dict the meta-atom structure via the ideal phase response, our
model relies on the constant interaction between the NNSM
and the optimization algorithm. A large number of meta-atom
images with design parameters were randomly generated and
sent to the NNSM for prediction. After the selectivity of the
optimization algorithm, one meta-atom with a spectral response
close to the ideal values can be obtained by setting the appro-
priate fitness. Because a specific phase-shift value can be selected
as the optimization object, one or multiple phase values can be
set as the optimization target, and the inverse prediction of the
meta-atom structure can be realized. Therefore, it presents an
effective solution for the “one-to-many” problem in the inverse
design of micro/nano devices.

5. CONCLUSION

In this study, we proposed a fast and accurate inverse design
method to design a metasurface. Utilizing the output of the
convolutional layers to concatenate the input of the deconvolu-
tional layers for data enhancement, we realized the direct pre-
diction of the abrupt phase spectrum. Based on the interaction
between the NNSM and the optimization algorithm, we de-
signed a novel inverse design model that can inversely predict
on-demand meta-atoms using a single phase-shift value. With
this inverse model, we designed an OAM (de)multiplexer based
on a phase-type metasurface, and 200 Gbit/s QPSK signals
were successfully transmitted with a BER approaching
1.67 × 10−6 at a received optical power of −20 dBm. This

Fig. 7. Test results of the metasurface at different wavelengths
(1500 nm, 1550 nm, 1600 nm). Top row, far-field light intensity dis-
tributions of right circularly polarized plane waves. Bottom row, de-
tection results of projecting a vortex beam with l � −1 on the OAM
generator.

1468 Vol. 10, No. 6 / June 2022 / Photonics Research Research Article



indicates that, using this method, we can effectively realize
the inverse design of a meta-atom structure from a single
on-demand phase shift. Such an inversely designed meta-atom
could be applied to the design of other complex electromag-
netic modulators, such as integrated photonic devices and
optical antennas.

APPENDIX A: METHODS

1. Architecture of NNSM
The basic structure of NNSM is shown in Fig. 8, where the
orange arrows represent convolution operations and the red ar-
rows represent transpose convolution operations. After per-
forming each convolution operation, we employ the leaky-
Relu function for nonlinear activation. In the process of full
connection, we employed the tanh function for nonlinear ac-
tivation.

2. Principle of Optimization Algorithm
The basic idea of an intelligent optimization algorithm (also
known as genetic algorithm) is to imitate the evolution process
of organisms in nature. Each combination can be denoted as an
individual, represented by a binary code, and one individual
represents one combination. Therefore, each combination
has its own code, and decoding the individual can obtain its
specific design parameters. These binary codes are known as
“chromosomes,” where the binary fragment of each design
parameter is known as a gene. The individuals of the next gen-
eration are created by crossover and mutation of the parent
chromosomes. During selection, individuals with lower fitness
values will be eliminated, whereas individuals with higher fit-
ness values will survive and reproduce more offspring.
Therefore, genes with higher fitness values will have a greater
probability of being passed on to the next generation.
Generally, the average fitness value of the offspring is higher
than that of the parents. During crossover, the parent chromo-
somes are intermixed and create new chromosomes constitut-
ing the population of the children to replace the parent
populations. Notably, the crossover point was randomly se-
lected. Assuming that the parent 1 is “11|0100|10” and parent
2 is “00|0010|00,” after crossover, we can get child 1 “11|0010|
10” and child 2 “00|0100|00.” During mutation, “genes” in
newly generated chromosomes will mutate with a specific prob-
ability, that is, a change from 0 to 1, or from 1 to 0. Here, the
crossover rate and mutation rate are set as 0.8 and 0.1, respec-
tively. According to these steps, we complete the entire selection
process using the roulette-wheel selection method.

3. Fabrication of the Designed Metasurface
We used standard EBL (EBPG 5150) to fabricate the designed
meta-atoms. First, a gold background layer (220 nm) and a
SiO2 spacer (160 nm) were deposited onto a 15mm × 15 mm
silicon substrate using an electron beam evaporator (ASB-EPI-
C6). Notably, a very thin layer of titanium (Ti) exists between
the SiO2 substrate and gold (Au) background layer (approxi-
mately 2 nm), which is used to increase the adhesion between
SiO2 and the Au background layer to prevent the Au from fall-
ing off during the subsequent degumming process. Thereafter,
the positive polymethyl methacrylate (PMMA, 950 K) resist
film was spin-coated on the SiO2 spacer layer. The sample

was placed into the homogenizer, and a speed of 4000 r/min
was selected for homogenization for 1 min; baking was
performed at 180°C for 1 min and 30 s, and a 150-nm-thick
PMMA layer was obtained. Because the height of our gold
nano-antennas is 50 nm, the thickness of PMMA must be
higher than 150 nm (triple the height of gold nano-antennas).
Thereafter, the nanostructures were etched on the PMMA
film by EBL, and the area of a single metasurface was
640 μm × 640 μm. After etching by EBL, we need to develop
and fix the sample, which can be completed by placing the sam-
ple in the developer for 1 min, then putting it in the stopper
solution for 30 s, and finally drying the remaining stopper sol-
ution with nitrogen. Next, a 50 nm gold film was deposited on
the sample via thermal evaporation. Finally, the sample was
placed in a 30% acetone solution and allowed to stand for
6 h. The beaker was, thereafter, shaken to remove the excess
PMMA and Au to obtain the metasurface structure. The pre-
sented design can ensure large resonance and high reflectivity at
a working wavelength of 1550 nm.

4. OAM Multiplexing Communication System
An OAM mode-division multiplexing link was constructed to
confirm the feasibility of the inverse-designed metasurface. As
shown in Fig. 9, a laser with a working wavelength of 1550 nm
was launched into the polarization controller (PC), and QPSK
signals with a transmission rate of 50 Gbit/s were loaded using
an arbitrary waveform generator (AWG 7122C) and an IQ
modulator. After amplification by an erbium-doped fiber am-
plifier (EDFA) and filtration using a bandpass filter (BPF), the
signal light was divided into four subchannels through an op-
tical coupler (OC). Thereafter, these four subchannels are
polarization-modulated by PCs, where two channels are x po-
larizations and the other two channels are y polarizations. To
realize channel multiplexing, four Gaussian signal lights are de-
correlated by single-mode fibers (SMFs) of different lengths,
carrying different signals. The four Gaussian beams, each of
which carried QPSK signals, were incident on the metasurface

Fig. 8. Specific architecture of physics-based NNSM.
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at different angles to generate four coaxially vortex beams with
OAM modes (l � �1,�2,�3,�4) and realize multiplexing.
After collimation and transmitting 1 m in free space, the coaxial
vortex beams were demultiplexed by another identical metasur-
face. Thereafter, the demultiplexed four channels were received
and converted into the original digital signals one by one.
In particular, at the receiver, the demultiplexed signals were
amplified by the EDFA and filtered by a BPF to improve
the receiver sensitivity, and the attenuator was used to adjust
the received optical power. After being detected by the inte-
grated coherent optical receiver (ICR), the four output electri-
cal waveforms were recorded using a real-time DSA and
processed offline in a computer.
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