• Photonics Research
  • Vol. 12, Issue 4, 865 (2024)
Zhenghao Guo1、2、†, Mengjun Liu3、4、†, Zijia Chen1、2, Ruizhi Yang3、4, Peiyun Li1、2, Haixia Da5、6, Dong Yuan1、2, Guofu Zhou1、2, Lingling Shui3、4、7, and Huapeng Ye1、2、*
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
  • 2SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
  • 3Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
  • 4Joint Laboratory of Optofluidic Technology and Systems, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
  • 5College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210046, China
  • 6Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, China
  • 7e-mail: shuill@m.scnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.516364 Cite this Article Set citation alerts
    Zhenghao Guo, Mengjun Liu, Zijia Chen, Ruizhi Yang, Peiyun Li, Haixia Da, Dong Yuan, Guofu Zhou, Lingling Shui, Huapeng Ye. Highly efficient nonuniform finite difference method for three-dimensional electrically stimulated liquid crystal photonic devices[J]. Photonics Research, 2024, 12(4): 865 Copy Citation Text show less
    References

    [1] J. Xiong, S.-T. Wu. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight, 1, 3(2021).

    [2] K. X. Chen, Y. Hou, S. Q. Chen. Design, fabrication, and applications of liquid crystal microlenses. Adv. Opt. Mater., 9, 2100370(2021).

    [3] A. V. Mamonova, I. V. Simdyankin, I. V. Kasyanova. Liquid crystal metasurfaces for versatile electrically tunable diffraction. Liq. Cryst., 50, 1555(2023).

    [4] I. V. Kasyanova, M. V. Gorkunov, V. V. Artemov. Liquid crystal metasurfaces on micropatterned polymer substrates. Opt. Express, 26, 20258-20269(2018).

    [5] I. H. Lin, D. S. Miller, P. J. Bertics. Endotoxin-induced structural transformations in liquid crystalline droplets. Science, 332, 1297-1300(2011).

    [6] T. Liu, F. Pagliano, R. van Veldhoven. Integrated nano-optomechanical displacement sensor with ultrawide optical bandwidth. Nat. Commun., 11, 2407(2020).

    [7] M. Xu, H. Hua. Geometrical-lightguide-based head-mounted lightfield displays using polymer-dispersed liquid-crystal films. Opt. Express, 28, 21165-21181(2020).

    [8] J. Ryu, N. Muravev, D. Piskunov. Deflector for resolution enhancement of head mounted displays and other visual systems. Conference on Lasers and Electro-Optics (CLEO), 1-2(2021).

    [9] S. Q. Li, X. Xu, R. Maruthiyodan Veetil. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science, 364, 1087-1090(2019).

    [10] Z. Zhu, Y. Wen, J. Li. Metasurface-enabled polarization-independent LCoS spatial light modulator for 4K resolution and beyond. Light Sci. Appl., 12, 151(2023).

    [11] L. Begel, T. Galstian. Liquid crystal lens with corrected wavefront asymmetry. Appl. Opt., 57, 5072-5078(2018).

    [12] H. C. Lin, Y. H. Lin. An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes. Opt. Express, 20, 2045-2052(2012).

    [13] Z. Liu, G. Hu, H. Ye. Mold-free self-assembled scalable microlens arrays with ultrasmooth surface and record-high resolution. Light Sci. Appl., 12, 143(2023).

    [14] M. Guan, Y. Xie, Y. Zhang. Moisture-tailored 2D Dion–Jacobson perovskites for reconfigurable optoelectronics. Adv. Mater., 35, 2210611(2023).

    [15] X. Wang, W. Yang, Z. Liu. Switchable Fresnel lens based on hybrid photo-aligned dual frequency nematic liquid crystal. Opt. Mater. Express, 7, 8-15(2017).

    [16] P. Chen, B.-Y. Wei, W. Hu. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics. Adv. Mater., 32, 1903665(2020).

    [17] C. P. Jisha, S. Nolte, A. Alberucci. Geometric phase in optics: from wavefront manipulation to waveguiding. Laser Photonics Rev., 15, 2100003(2021).

    [18] C. Meng, S. J. Wu, I. I. Smalyukh. Topological steering of light by nematic vortices and analogy to cosmic strings. Nat. Mater., 22, 64-72(2023).

    [19] X. Wang, S. Wu, W. Yang. Light-driven liquid crystal circular Dammann grating fabricated by a micro-patterned liquid crystal polymer phase mask. Polymers, 9, 380(2017).

    [20] J. Xiong, R. Chen, S. T. Wu. Device simulation of liquid crystal polarization gratings. Opt. Express, 27, 18102-18112(2019).

    [21] H. Milton, P. Brimicombe, P. Morgan. Optimization of refractive liquid crystal lenses using an efficient multigrid simulation. Opt. Express, 20, 11159-11165(2012).

    [22] G. D. Lee, J. Anderson, P. J. Bos. Fast Q-tensor method for modeling liquid crystal director configurations with defects. Appl. Phys. Lett., 81, 3951-3953(2002).

    [23] N. J. Mottram, C. J. Newton. Introduction to Q-tensor theory. arXiv(2014).

    [24] I. Nys, M. Stebryte, Y. Y. Ussembayev. Tilted chiral liquid crystal gratings for efficient large-angle diffraction. Adv. Opt. Mater., 7, 1901364(2019).

    [25] I. Nys, J. Beeckman, K. Neyts. Surface-mediated alignment of long pitch chiral nematic liquid crystal structures. Adv. Opt. Mater., 6, 1800070(2018).

    [26] C. S. MacDonald, J. A. Mackenzie, A. Ramage. Efficient moving mesh methods for Q-tensor models of nematic liquid crystals. SIAM J. Sci. Comput., 37, B215-B238(2015).

    [27] F. C. Frank. I. Liquid crystals. On the theory of liquid crystals. Discuss. Faraday Soc., 25, 19-28(1958).

    [28] P. D. Gennes, J. Prost. The Physics of Liquid Crystals(1993).

    [29] J. M. Ball. Mathematics and liquid crystals. Mol. Cryst. Liq. Cryst., 647, 1-27(2017).

    [30] J. P. Hernández-Ortiz, B. T. Gettelfinger, J. Moreno-Razo. Modeling flows of confined nematic liquid crystals. J. Chem. Phys., 134, 134905(2011).

    [31] H. Mori, E. C. Gartland, J. R. Kelly. Multidimensional director modeling using the Q tensor representation in a liquid crystal cell and its application to the π cell with patterned electrodes. Jpn. J. Appl. Phys., 38, 135(1999).

    [32] D. M. Young. Convergence properties of the symmetric and unsymmetric successive overrelaxation methods and related methods. Math. Comput., 24, 793-807(1970).

    [33] A. Nicholls, B. Honig. A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson–Boltzmann equation. J. Comput. Chem., 12, 435-445(1991).

    [34] N. Qian. On the momentum term in gradient descent learning algorithms. Neural Netw., 12, 145-151(1999).

    [35] E. Willman, F. A. Fernández, R. James. Modeling of weak anisotropic anchoring of nematic liquid crystals in the Landau–de Gennes theory. IEEE Trans. Electron Devices, 54, 2630-2637(2007).

    [36] http://www.hcch.net.cn/. http://www.hcch.net.cn/

    [37] http://comsol.com. http://comsol.com

    [38] https://www.mathworks.com. https://www.mathworks.com

    [39] https://www.lumerical.com. https://www.lumerical.com

    [40] R. James, E. Willman, F. A. Fernandez. Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order. IEEE Trans. Electron Devices, 53, 1575-1582(2006).

    [41] F. Lin, C. Wang. Recent developments of analysis for hydrodynamic flow of nematic liquid crystals. Philos. Trans. R. Soc. A, 372, 20130361(2014).

    [42] R. James, E. Willman, F. A. Fernandez. Computer modeling of liquid crystal hydrodynamics. IEEE Trans. Magn., 44, 814-817(2008).

    [43] R. K. Luneburg, E. Wolf, M. Herzberger. Mathematical Theory of Optics(1964).

    [44] H. Ye, C.-W. Qiu, K. Huang. Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh–Sommerfeld method. Laser Phys. Lett., 10, 065004(2013).

    [45] F. Shen, A. Wang. Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula. Appl. Opt., 45, 1102-1110(2006).

    [46] H. Dou, F. Chu, Y. Q. Guo. Large aperture liquid crystal lens array using a composited alignment layer. Opt. Express, 26, 9254-9262(2018).

    [47] F. Chu, L.-L. Tian, R. Li. Adaptive nematic liquid crystal lens array with resistive layer. Liq. Cryst., 47, 563-571(2020).

    [48] Y. Li, S. T. Wu. Polarization independent adaptive microlens with a blue-phase liquid crystal. Opt. Express, 19, 8045-8050(2011).

    Zhenghao Guo, Mengjun Liu, Zijia Chen, Ruizhi Yang, Peiyun Li, Haixia Da, Dong Yuan, Guofu Zhou, Lingling Shui, Huapeng Ye. Highly efficient nonuniform finite difference method for three-dimensional electrically stimulated liquid crystal photonic devices[J]. Photonics Research, 2024, 12(4): 865
    Download Citation