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Liquid crystal (LC) photonic devices have attracted intensive attention in recent decades, due to the merits of
tunability, cost-effectiveness, and high efficiency. However, the precise and efficient simulation of large-scale
three-dimensional electrically stimulated LC photonic devices remains challenging and resource consuming.
Here we report a straightforward nonuniform finite difference method (NFDM) for efficiently simulating large-
scale LC photonic devices by employing a spatially nonuniform mesh grid. We show that the NFDM can be
further accelerated by approximately 504 times by using the improved successive over-relaxation method (by
12 times), the symmetric boundary (by 4 times), the momentum gradient descent algorithm (by 3.5 times), and
the multigrid (by 3 times). We experimentally fabricated the large-scale electrically stimulated LC photonic de-
vice, and the measured results demonstrate the effectiveness and validity of the proposed NFDM. The NFDM
allocates more grids to the core area with steep electric field gradient, thus reducing the distortion of electric field
and the truncation error of calculation, rendering it more precise than the finite element method and traditional
finite difference method with similar computing resources. This study demonstrates an efficient and highly
reliable method to simulate the large-scale electrically stimulated LC photonic device, and paves the way for
customizing a large-scale LC photonic device with designable functionalities. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.516364

1. INTRODUCTION

Liquid crystals (LCs) are a kind of optically birefringent
material with dielectric anisotropy, which can be denoted by
two orthogonal principal axes, namely the short and long axes
[1,2]. The long axis of LC molecules (positive liquid crystals) is
consistent with its director direction, and is responsive to ex-
ternal stimuli such as electric field, heat, light, or surface
molecular anchoring force [1–4]. In principle, reorienting
the director of LC molecules is equivalent to redefining the dy-
namic or geometric phase retardation brought by LCs, which

facilitate vast applications ranging from optical sensor [5,6],
head-mounted display [1,7,8], and spatial light modulator
[9,10] to electrically tunable lens/microlens [2,11–15] and spe-
cial beam generator [16–19]. Hence, obtaining the director
configuration of LC molecules plays a vital role in numerically
analyzing, simulating, and designing the LC photonic devices
with multifarious functionalities.

So far, the simulation of the director configuration of large-
scale LC photonic devices in the presence of both external
stimulus and surface molecular anchoring force usually adopts
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coarse and uniform mesh grids to the LC layer, due to the lim-
ited computing resources and the large size of the device
[20–22]. This may induce uncertainty and cause serious error
to the simulation in case of inhomogeneous and gradient
stimulus, which leads to rapid directors morphing in certain
regions such as the location of defects [23]. Hence, in order to
obtain the accurate solution, it is noteworthy to allocate more
computing resources to the critical region, implying that fine
mesh should be employed to the area with dramatically chang-
ing directors. Meanwhile, in order to increase the efficiency, a
relatively coarse mesh is sufficient for other regions with
smoothly morphing directors. Generally, this task can be par-
tially accomplished by using the finite element method (FEM),
which flexibly meshes the model into triangular or tetrahedral
elements. However, although FEM is widely considered as re-
liable method for calculating the two-dimensional LC director
[24,25], it encounters difficulties when it is extended to the
three-dimensional (3D) LC director, due to the computational
resource-consuming procedures, including approximating the
field variables of each element with an interpolating function
and minimizing the residual of the differential equations [25].
The difficulty is further amplified when accurate director dis-
tribution should be obtained for light field simulation. By con-
trast, the traditional finite difference method (FDM), which
meshes the model into uniform cuboid units, consumes far
fewer resources than FEM [20,26]. However, in order to in-
crease the accuracy of FDM, the grid size should be adjusted
uniformly at the cost of increasing the computing resources ex-
ponentially and wasting resources in the low gradient region.
Therefore, it remains challenging to simulate large-scale 3D
LC photonic devices accurately, due to the limitation of com-
putational resources and efficiency.

Herein we report a nonuniform finite difference method
(NFDM) to efficiently simulate a large-scale 3D electrically
stimulated LC photonic device with high accuracy via flexibly
controlling the grid density in the area with steep spatial gra-
dient stimulus. We accelerate the NFDM by approximately
504 times, via using a stepwise parallel successive over-relaxa-
tion (SOR) method (by 12 times), the symmetric boundary (by
4 times), the momentum gradient descent (MGD) algorithm
(by 3.5 times), and the multigrid (by 3 times). Studies based on
the finite difference time domain (FDTD) software prove that
NFDM has higher stability and accuracy than the FEM and
traditional FDM. The diffraction field of the LC device is ef-
ficiently simulated with low computing resources by combining
the NFDM, the vectorial Rayleigh–Sommerfeld diffraction for-
mula, and fast Fourier transform. Furthermore, we experimen-
tally fabricated the large-scale electrically stimulated LC
photonic device, and the measured results demonstrate the ef-
fectiveness and validity of our proposal. This study provides an
efficient and accurate method to simulating the LC photonic
device, which may facilitate the design and optimization of LC
photonic devices with customized functionalities.

2. THEORY AND METHODS

In order to explicitly illustrate our proposal, let us take the LC
photonic device consisting of patterned electrode array [see
Fig. 1(a)] for example. The LC device consists of two plane

glasses with inner surface spin-coated with conductive indium
tin oxide (ITO) film. One of the ITO films is patterned into
the electrode array. The LCs are sandwiched between the two
glasses and form a planar cell. After applying the alternating
current (AC) to the electrodes, the LC director tends to assem-
ble into a certain configuration in response to the electric field
and then forms the LC lens consequently [11,12]. Figures 1(b)
and 1(c) depict the mesh grid of the patterned electrodes by
using uniform [Fig. 1(b)] and nonuniform [Fig. 1(c)] FDM
with identical amounts of mesh grids. Evidently, the grid of
the nonuniform method is finer than the uniform method in
the etched area via allocating more grids to the core area with
steep electric field gradient. The details of the simulation
method of the LC director and the acceleration algorithms to
increase the calculation speed of NFDM are introduced in the
following section.

A. Q Tensor and Director Simulation
According to the Frank–Oseen model [27], the LC director can
be described by using vector n � �n1, n2, n3�. However, it
should be bore in mind that using vector n to describe LC di-
rector configurations has a theoretical imperfection. Unlike ac-
tual LC molecules, the vector angle between the two directors
can be larger than 90°, especially when the vectors orient op-
posite to each other, but the realistic LC directors are identical
with head–tail symmetry. It leads to infinite energy in the LC
topology defect (discontinuity in director) region in simulation,
which cannot exist stably in simulation and is inconsistent with
the reality. Hence, the results of using the vector method to
simulate the LC devices with complex electrodes or surface
molecular anchoring are unreliable. To mitigate this challenge,

Fig. 1. (a) Schematic diagram of electrically stimulated LC photonic
device. (b), (c) Grids of patterned electrode meshing in similar number
of model grids. (b) Uniform grids and (c) nonuniform grids. The scale
bars in (b), (c) are 10 μm.
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here we propose to adopt Landau-de Gennes’s Q tensor [28] to
represent the uniaxial LC, and the Q is defined as follows
[22,23,29,30]:

Q � S
�
n ⊗ n −

1

3
I
�

� S

0
B@

n1n1 − 1∕3 n1n2 n1n3
n1n2 n2n2 − 1∕3 n2n3
n3n1 n3n2 n3n3 − 1∕3

1
CA, (1)

where I is the identity matrix, S is the order parameter, and Qij
is used to denote the ijth element of Q. As Q is a symmetric
traceless matrix, it has six different elements, namely Q11, Q22,
Q33, Q12, Q13, and Q23. The Q tensor can avoid the head–tail
asymmetry problem because the same Q is used for n and −n.

Here, we use the Q tensor [Eq. (1)] and the potential U to
represent the elastic free energy density f d [see Eq. (A1) in
Appendix A] and the electric free energy density f e [see
Eq. (A2) in Appendix A]. Hence, the total energy Fg can be
obtained by integrating the Gibbs free energy density f g over
the volume, namely Fg �

R
f gdv �

R
f d − f edv. The total

energy is minimum when the LC director reaches an equilib-
rium state by the constant external field. Therefore, the final
LC director configuration can be obtained by solving Euler–
Lagrange equations with constraint jnj � 1:

0 � −�f g �U , (2a)

0 � −�f g �ni � λni, i ∈ f1, 2, 3g, (2b)

where λ is a Lagrange multiplier to constrain jnj � 1. Eq. (2a)
is Gauss’s law,

�f g �h �
∂f g

∂h
−

X
i�1, 2, 3

d

dξi

∂f g

∂�∂h∕∂ξi�
,

h ∈ fU ,Q11,Q12,Q13,Q22,Q23,Q33g, (3)

and

�f g �ni �
X

j�1, 2, 3

�f g �Qij

∂Qij

∂ni

� 2S
X

j�1, 2, 3

nj�f g �Qij
, i ∈ f1, 2, 3g: (4)

Here, we propose to adopt the relaxation method based on dy-
namics to solve Eq. (2), which is widely considered as a stable
method to calculate the LC director [20,23,30,31]. The equa-
tion of the relaxation method can be given as below:

γ
∂ni
∂t

� −�f g �ni � λni , i ∈ f1, 2, 3g, (5)

where γ is the viscosity coefficient, t is the time variable, and λ is
the Lagrange multiplier ensuring that n is a unit vector. The
component λni can be removed via vector normalization in
each iteration. Taking the time difference of Eq. (5), we have

∂ni
∂t

� Δni
Δt

� nt�Δt
i − nti
Δt

, i ∈ f1, 2, 3g: (6)

Therefore, the iteration formula of relaxation method can be
finally derived as

ñt�Δt
i � nti −

Δt
γ
�f g �ni , nt�Δt � ñt�Δt

jñt�Δt j ,

i ∈ f1, 2, 3g, (7)

where nt and nt�Δt are the director configuration at the current
time step and the next time step, respectively, and �f g �ni is avalue that indicates the level of the directors deviating from
the low energy state. In each iteration, the total energy is re-
duced by turning a tiny angle in the opposite direction in pro-
portion to �f g �ni . At the beginning of the iteration, a random
director is set to the LC device, and a proper Δt∕γ is chosen.
The director configuration of the next step is obtained based on
the iteration with the random director. The total energy de-
creases continuously during the iterations, and the director con-
figuration eventually converges to the equilibrium state.

By solving Eq. (2a), we can obtain the iterative equation of
the potential U in the LC layer. In principle, the potential U is
zero at infinity. However, we use dU∕dz � 0 at 4d away from
the LC layer with the error O�e−4d � to replace the infinity [31],
where d is the LC layer thickness. Moreover, for simplicity,
Gauss’s law is used to solve the potential distribution in the
isotropic glass and the electrodeless region of ITO interface,
which are given as ∇ ·D � 0, D � εglass · E , and E � −∇U .

B. Nonuniform FDM
As introduced above, it is impossible to solve the analytical sol-
ution for complex LC models. Hence, discretization methods
are demanded in solving the numerical solution. In the tradi-
tional FDM, the first and second derivatives required by
numerical iteration in the relaxation method for each discrete
points can be represented by the values of adjacent points [see
Eq. (A3) in Appendix A], namely using central difference. The
grids in the whole calculation area are uniform; hence the grid
density cannot be flexibly adjusted. To overcome this chal-
lenge, we propose the nonuniform FDM to calculate the direc-
tor configuration, where the inhomogeneous grids can be
meshed according to the gradient of the external field.

In order to derive the nonuniform FDM, the differentiable
function f �x, y� at points x � x0 − Δx1 and x � x0 � Δx2 is
first expanded according to the Taylor expansion:

f �x0 − Δx1� � f �x0� − Δx1f 0
x�x0�

� Δx21
2!

f 0 0
xx�x0� � O�Δx31�, (8a)

f �x0 � Δx2� � f �x0� � Δx2f 0
x�x0�

� Δx22
2!

f 0 0
xx�x0� � O�Δx32�, (8b)

where x1 and x2 approach 0, and O�Δx31� and O�Δx32� are neg-
ligible. By solving the variables in Eq. (8), we can obtain the
first-order and second-order differential equations in Eqs. (9a)
and (9b). Moreover, we can get the second-order differential
equation along the xy direction by taking the derivative of
f 0
x along the y direction, which is given by Eq. (9c):
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f 0
x�x0�

≈
Δx21f �x0 � Δx2� − Δx22f �x0 − Δx1� � �Δx22 − Δx21�f �x0�

�Δx1 � Δx2�Δx1Δx2
,

(9a)

f 0 0
xx�x0�

≈
2�Δx1f �x0�Δx2��Δx2f �x0 −Δx1�− �Δx1�Δx2�f �x0��

�Δx1�Δx2�Δx1Δx2
,

(9b)

f 0 0
xy�x0, y0� ≈

Δy21f 0
x�x0, y0 � Δy2� − Δy22f 0

x�x0, y0 − Δy1� � �Δy22 − Δy21�f 0
x�x0, y0�

�Δy1 � Δy2�Δy1Δy2
: (9c)

After substituting Eq. (9) into Eqs. (2a) and (7), we can
obtain the iterative formula for the potential and the director
at each point in the LC model. During the iteration process of
these formulas, the director distribution of next moment is iter-
ated from that of the current moment. It should be mentioned
that the truncation error [induced by neglecting O�Δx3�] exists
in all the iterations; however, it will not be accumulated during
the whole iterative process. We propose to realize the nonuni-
form mesh grids via controlling Δx, Δy, and Δz. In the sim-
ulation, the grid density of FDM can be adjusted freely
according to the gradient of the spatial electric field or surface
molecular anchoring to improve the simulation accuracy and
meanwhile save computing resources. It should be emphasized
that the nonuniform grid is transformed into the uniform grid,
when Δx1 � Δx2 � Δx and Δy1 � Δy2 � Δy.

C. Accelerating Algorithm
Equations (1)–(12) describe the fundamental formula for nu-
merically calculating the spatial distribution of the LC director
under stimulus of external electric field by FDM. However, the
speed of the calculation based on these equations is unsatisfac-
tory. In this study, we propose to accelerate the simulation by
using the four algorithms, as introduced below. In order to
evaluate the performance of each accelerating algorithm, we
use the simulation times between turning on the algorithm
and turning off the algorithm to calculate the acceleration
value. To be fair, the configuration of the computer used
for all simulations in this article is the same (CPU, Intel i5-
10400F 2.9 GHz; GPU, NVIDIA GTX 1650s; RAM,
16G). It is worth noting that the numerical value of the speed
increase is based on the LC device and grids shown in this
study, although it may slightly change in case of different
LC devices.

First, we discuss the problems that arise in the potential,
which is calculated alternately with the LC director. During
the potential iterative calculation in our simulation, the conver-
gence rate slows down sharply when the result is close to the
stable solution, rendering the electric field calculation hard to

reach equilibrium state. In order to overcome this challenge, the
SOR method is adopted to accelerate the convergence speed by
providing additional power. The equation of the SOR method
is written as [31,32]

Ut � �1 − ω�Ut−Δt � ωŨ t , (10)

where ω is the relaxation parameter, 1 < ω < 2. The result of
Eq. (10) diverges when ω ≥ 2, while it is transformed into the
Gauss–Seidel method when ω � 1 [33]. During each iteration,
the potential calculated result Ũ t is taken as the temporary re-
sult, and the final potential Ut is obtained by using Eq. (10).

Proper ω is chosen to accelerate the simulation, and it is set to
about 1.98 in our calculation.

However, when the SOR method is used to calculate alter-
nately with the director iterative equation, the result is diver-
gent. In order to illustrate the problem, let us take the
two-dimensional model [Fig. 2(a)] for example. We need to
use the director and potential values of the surrounding blue
points to calculate the iterative value of the potential at the
red point. At the beginning, we attempted to use the SOR
method alternate calculation with director iterative equation;
however, we found that the results are fluctuating and highly
diverging when calculating red and blue points simultaneously.
Hence, to take full advantage of the matrix operation, we pro-
pose a stepwise parallel SOR method suitable for director sim-
ulation of FDM. As shown in Fig. 2(b), the iteration values of
all points of each color are stepwise calculated and updated in
order of blue, red, yellow, and green. With this method, we can
avoid calculating the iteration values of adjacent points in the
same iteration. Moreover, it should be mentioned that this
method can be flexibly extended to the 3D model if it is divided
into eight steps for calculation. The calculation speed of the
potential is improved by about 12 times in our simulation.

Apart from the improved parallel SOR method we pro-
posed, the periodic boundary condition can also be used to save
the computing resources, as shown in Fig. 2(c), where a unit is
simulated instead of the entire array. Furthermore, when the
unit element [Fig. 2(d)] has axial symmetry along the array di-
rection, the computing resources in case of applying symmetric
boundary condition are only 1/4 of that using the periodic
boundary condition. Due to the complexity of the boundary
cases using the Q tensor, we derive the following formula
for a general description:

pij,ξk � �−1�δik�−1�δjk cξk , i, j ∈ f1, 2, 3g, k ∈ f1, 2g,
(11)

where coordinate �ξ1, ξ2� � �x, y� denotes the Cartesian coor-
dinate system; δij is Kronecker’s delta (δij � 1, when i � j;
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otherwise δjk � 0); cx and cy are the boundary conditions we
set in x and y directions (c � 0 denotes periodic and c � 1 for
symmetric boundary); and Pi j, x and Pi j, y are the boundary
conditions of Qij in x and y directions, as shown in Fig. 2(e)
(p � 0 is periodic boundary, p � 1 is symmetric boundary, and
p � −1 is antisymmetric boundary). Furthermore, the
z-direction symmetry format can be easily extended and ap-
plied when the upper and lower pattern electrodes are consis-
tent. In our simulation, the calculation speed of the symmetric
boundary is improved to four times faster than that of the peri-
odic boundary.

Sequentially, we adopted the momentum gradient descent
algorithm to accelerate the director morphing from a disordered
state to an equilibrium state [20,34], as given below:

Δnti � −
Δt
γ
�f g �ni � βΔnt−Δti , (12)

with Δnti � nt�Δt
i − nti ,Δnt−Δti � nti − nt−Δti , i ∈ fx, y, zg,

where Δnt and Δnt−Δt denote the director change of the cur-
rent iteration and the previous iteration, respectively; β is a
value usually set between 0.8 and 0.9. Here, the director n
has to be normalized after each iteration, and Δnt−Δt records
all previously updated values with exponentially reduced weight
due to Eq. (12). Therefore, the MGD algorithm accumulates
momentum during the downhill and improves the update
speed, but it slows down when approaching stability.
Alternatively, adjusting the Δt∕γ term dynamically can also
achieve the same effect as the MGD algorithm. Finally, the
LC director calculation is accelerated up to about 3.5 times
faster by using the MGD algorithm in our simulation.

Finally, we adopt the multigrid [21] to speed up the calcu-
lation. In principle, the multigrid method first uses a coarser
grid to construct the model. After completing the iterative com-
putation, a finer grid is built for further calculation. The initial

value of the director and potential of the finer grid are inter-
polated from the calculation results of the coarser grid and
satisfy the setting of the electric fields. The simulation is termi-
nated until the grid satisfies the requirements. It is found that
the multigrid in our simulations can speed up the computation
by approximately three times.

3. RESULTS AND DISCUSSION

In order to verify our proposal, numerical simulations based on
FEM and uniform and nonuniform FDMs are conducted to
the same model [Fig. 3(a)], where the periodic boundary con-
dition is applied. The parameters are set as follows: the ITO
electrodes array with circular aperture has diameter of
50 μm and period of 100 μm, the LC layer thickness is
50 μm, the LC material is 5CB (K 11 � 6.2 pN, K 22 � 3.9
pN, K 33 � 8.2 pN [35], ε⊥ � 7.0 (1 kHz), εjj � 18.5
(1 kHz), ne � 1.6975 (589 nm), no � 1.5350 (589 nm),
q0 � 0 [36]), and an AC voltage of 1 kHz with 200 V is ap-
plied. The upper and lower boundaries of the LC layer are set as
strong homeotropic anchoring (fix the director vertically), and a
random director configuration is set to other LC molecules.

We first simulated the LC directors based on the FEM
method with the commercially available COMSOL software
[37]. The model [Fig. 3(a)] was built in COMSOL, where the
variational weak-form equations of the total energy Fg [see
Eq. (A4) in the Appendix A] were put into COMSOL’s physical
interface of weak-form partial differential equation, and the
vector normalization similar to Eq. (7) was applied to the di-
rector. The relative error (<0.01) was set as the iteration ter-
mination condition. When the minimum element size is set to
1 μm, the generated domain elements are 105,847 in the LC
layer, and 90,270 in the glass region (Table 1). The simulation
ran for 53.3 min on a laptop (CPU, Intel i5-10400F 2.9 GHz;

Fig. 2. (a) Schematic diagram of calculation relation. (b) Calculation sequence of SOR. (c), (d) Schematic diagram of (c) periodic and (d) sym-
metric boundary conditions. (e) Boundary conditions at different p values.
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GPU, NVIDIA GTX 1650s; RAM, 16G), and the results of
director are depicted in Figs. 3(b)–3(d), where slice diagrams of
the tilt angle of the directors are plotted. The FEM method
based on COMSOL can directly lead to the solution after iter-
ation and without using the relaxation method. However, the
prominent mosaic effect existing in the zoomed-in image re-
veals that the directors based on FEM are not accurate. A more
reliable method is demanded in this kind of simulation. More
details about the FEM mesh can be found in Appendix B.

Next, we used the same computer and MATLAB software
[38] to implement the uniform and nonuniform FDMs (de-
scribed in Section 2.B) and simulate the LC directors of the
same model for the purpose of comparison. The minimum
grid sizes are set as x × y × z�0.69μm × 0.69μm × 0.48μm
in uniform FDM and x × y × z � 0.29 μm × 0.29 μm ×
0.3 μm in nonuniform FDM (Table 1). The design procedure
of the nonuniform grid is to first use a coarse uniform grid for
simulation to obtain the preliminary result, which is then used

as basis to set up nonuniform grids. After the area and grid size
of the fine grid are chosen, we determine the area and grid size
of the coarse grid. Subsequently, we adopt a grid transition with
a geometric sequence of sizes between the fine grid and the
coarse grid in the simulation. The total mesh grids of LC di-
rectors are estimated to be x × y × z � 144 × 144 × 106 �
2,198,016 in uniform FDM and x × y × z�204 × 204 ×52�
2,164,032 in nonuniform FDM, respectively. We also per-
formed comparison of FDM and NFDM with similar smallest
spatial resolution (the results in the bottom row of Table 1). It
can be seen that a fine FDM requires nine times the number of
original grids, and the calculation time is significantly in-
creased, ultimately achieving the same effect as NFDM. This
directly proves the effectiveness of our method. In order to sat-
isfy approximately zero potential at infinity with dU∕dz � 0
(4d away from the LC layer), the grids of the potential inside
the glass substrate should be increased to four times of the
director grids, as is necessary for calculating the electric field

Table 1. Calculation Information of Three Methods

Methods
Minimum Element

Size (μm)
Number of Domain
Elements (LC Region)

Computational
Resources (Gb)

Number of
Iterations

Simulation
Time (min)

Total Energy
F g (J)

FEM (COMSOL) 1 105,847 13.6 11 53.3 −6.22 × 10−10
Uniform FDM 0.69 × 0.69 × 0.48 2,198,016 3.1 1253 7.4 −6.33 × 10−10
Nonuniform FDM 0.29 × 0.29 × 0.3 2,164,032 3.1 1551 10.2 −6.36 × 10−10
Uniform FDM (fine) 0.3 × 0.3 × 0.31 18,063,360 4.2 1955 45.1 −6.36 × 10−10

Fig. 3. (a) Schematic illustration of the unit cell of the LC photonic device. (b)–(j) Slice diagrams of the calculated tilt angle of the directors.
(b)–(d) FEM, (e)–(g) uniform FDM, and (h)–(j) nonuniform FDM. (b), (e), (h) Along x direction where x is sampled at 50, 55, 60, 65, 70, 75, 80,
and 85 μm. (c), (f ), (i) Along z direction where z is sampled at 30, 35, 40, 45, and 49.5 μm. (d), (g), (j) Zoomed-in image of tilt angle diagrams of the
directors.
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inside the glass. Moreover, the total energy of the system during
the iterative calculation of the relaxation method is employed to
denote the stability of the temporary LC director configuration.
If the maximum change in the LC directors n and potential U
between two iterations at all points satisfy �Δn�max < 5 × 10−7

(three components) and �ΔU �max∕U external < 5 × 10−7, where
U external is the applied voltage, we consider the LC director field
to reach an equilibrium state and shut off the iteration. When
symmetric boundary conditions are employed, the simulation
time of uniform and nonuniform FDM method is 7.4 min and
10.2 min (Table 1), respectively. It can be seen from Figs. 3(e)–
3(j) that the LC directors lie almost planar at the edges, due to a
strong in-plane component of electric field arising from the
transverse electric field gradient. In principle, this gradient
can be explained by the lower potential formed at the center
of the etching area due to the lower surface electrode and the
zero potential at infinity. Moreover, the simulated tilt angles of
the LC directors in case of the uniform and nonuniform FDM
are shown in Figs. 3(e)–3(j). It can be seen that the tilt angle
distributions of the three methods are the same as each other
both along the x direction [Figs. 3(b), 3(e), and 3(h)] and the
z direction [Figs. 3(c), 3(f ), and 3(i)]. However, according to
the value of the lowest total energy Fg (equilibrium state) in
Table 1, it is reasonable to conclude that the nonuniform FDM
generates better results than FEM and uniform FDM.
Moreover, a significant difference exists and can be identified
in the zoomed-in image [Figs. 3(d), 3(g), and 3(j)], which
clearly indicates that the nonuniform FDM is most refined
[Fig. 3(j)] and precise (lowest total energy).

The calculation information of the three methods (Table 1)
illustrates that FEMuses far fewer domain elements than FDM;
however, it consumes more computational time and resources.
FEM uses an interpolation function to represent the distribu-
tion of director in the domain elements, but it cannot get

accurate results due to the limitation of the number of elements
and computational resources. Therefore, using FEM to
simulate LC devices is inefficient and becomes challenging
in the case of large-size devices. As a comparison, FDM leads
to a similar result to FEM while consuming fewer resources and
time (both less than a quarter). Moreover, nonuniform FDM
takes slightly more time to calculate than uniform FDM, but
yields finer results, which is acceptable. These results demon-
strate the effectiveness of using nonuniform FDM to calculate
the LC director configuration, which render it possible to sim-
ulate large-scale 3D LC devices. Moreover, compared with
FEM, which solves the equation directly, nonuniform FDM
using the pseudo-dynamic relaxation method is helpful to
understand the LC behavior.

Figures 4(a)–4(c) plot the normalized grid density distribu-
tion of the nonuniform FDM in the xz plane and xy plane,
which is described by 1∕�Δx × Δy × Δz�. It can be observed
that the mesh near the electrode is densest, and it gets sparse
away from the electrode. This trend is clearly shown and con-
firmed by the zoomed-in image [Fig. 4(c)] and the red dashed
curves in Figs. 4(d) and 4(e), where the grid sizes of the uniform
and nonuniform methods are plotted. As the gradient of the
electric field changes sharply near the electrode, thus inducing
dramatic change to the director orientation, it is reasonable to
allocate more mesh grids (smaller grid size) in these regions
while using much larger grid size in the area away from the
electrode. In this study, we use a geometric sequence with a
common ratio about 1.2 to transit grids between the fine
and the coarse grids, because the nonuniform grid size increases
proportionally. This procedure helps to increase the calculation
accuracy while reducing the computing resources. Contrarily,
the uniform mesh grid [blue curve in Figs. 4(d) and 4(e)] keeps
constant and may result in an incorrect solution. The grid
number of the uniform should increase about 9.1 times to

Fig. 4. Comparison of mesh grid distribution between nonuniform and uniform methods. (a)–(c) Grid of nonuniform method (a) in xz plane,
(b) in xy plane, and (c) inside the LC layer in xz plane. (d), (e) Grid size comparison between the uniform and nonuniform methods. (d) Along x or y
direction. (e) Along z direction.
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achieve the same accuracy as the nonuniform FDM in this
model. To prove the validity of the proposed NFDM, we
experimentally fabricated the device according to following pro-
cedures. First, ITO glass (glass thickness, 700 μm; ITO thick-
ness, 25 nm) was cleaned by deionized water and dried by
nitrogen. The ITO surface was spin-coated (3000 r/min, 60 s)
by photoresist SUN120P, and then baked and solidified on a
hot plate (90°C, 90 s). After cooling, the photoresist coated
substrate was covered with the fabricated mask and exposed by
UV irradiation. Subsequently, the patterned photoresist was
baked on the hot plate (120°C, 30 min). The ITO glass was
wet-etching in the mixture (V HCl:V HNO3

:V H2O � 50:3:50,
heating in water bath at 50°C, 90 s) after cooling. After ethanol
cleaning and nitrogen blow-drying, we obtained the ITO glass
with patterned electrode array. A thin film of polydimethylsi-
loxane was spin-coated onto the ITO glass substrate to provide
a vertical surface anchoring effect and then baked at 120°C for
20 min. After that, the patterned ITO electrode and ITO glass
are assembled to form the LC cell by using 50 μm spacers.
Finally, the 5CB LC material was filled into the LC cell on
a 40°C hot plate.

We used the experimental setup in Fig. 5(a) to characterize
the optical performance of the sample. The beam from a con-
tinuous-wave laser with working wavelength of 532 nm is col-
limated and then converted to circularly polarized light by a
linear polarizer (LP) and a quarter-wave plate (QWP). The re-
sulting circularly polarized beam impinges on the sample from
the side of patterned electrodes, and the diffraction pattern is
recorded by the charge coupled device (CCD). Figures 5(b) and

5(f ) depict the experimentally captured data in the array and
one unit cell (at the other LC layer surface). In order to com-
pare the experimental and simulation results, we imported the
director configuration from the three methods described above
into the commercially available FDTD software [39] and set
the model accordingly with the same parameters.

Figure 5(c) reveals that the light field intensity distribution
obtained by FEM differs greatly from the experimental result,
due to the inaccurate director configuration, which brings dis-
astrous influence on the subsequent simulation. Conversely, the
light field intensity distributions obtained by FDM [Figs. 5(d)
and 5(e)] fit with the experimental result [Fig. 5(f )]. However,
some deviations can still be observed among Figs. 5(d), 5(e),
and 5(f ), which may arise from the fabrication process of
the LC sample and the purity of the incident beam.
Moreover, there may be a minor error in the simulation due
to the inconsistent elastic constants of LC materials and the
unconsidered LC order parameter [22,40], hydrodynamics
[30,41,42], and weak anchoring [31]. To unveil the details
of the simulation results, we extracted the intensity distribution
of the outermost ring from the light fields of the three methods
[Fig. 5(g)]. Figures 5(e) and 5(g) indicate that the nonuniform
FDM leads to a smooth result, due to the fine grids in the re-
gion where high gradient of the electric field exists. It can be
inferred from the above results that the nonuniform FDM uses
fewer computing resources; however, it obtains finer simulation
results compared with the FEM and uniform FDM.

Without loss of generality, we further verified the diffraction
process of the light field in the propagating direction. In the

Fig. 5. (a) Schematic illustration of the experimental setup to characterize the LC devices. (b), (f ) Experimentally recorded light field intensity
distributions at the LC layer surface of (b) array and (f ) one unit. (c), (d), (e) Light field simulation results of the LC layer in the transverse plane with
(c) FEM, (d) uniform FDM, and (e) nonuniform FDM. (g) Light field intensity distribution of the outermost ring of the LC layer surface in polar
coordinate. (h) Simulated light field intensity distribution along the longitudinal plane. (i) Experimentally recorded light field intensity distribution
along the longitudinal plane. The scale bar in (b) is 50 μm; the scale bars in (c)–(f ) are 10 μm.
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simulation, the calculation based on FDTD can be simply
realized by the diffraction algorithm, because the light field
propagates in the uniform and parallel medium of glass and
air after passing through the LC layer. Taking our model for
example, if we increase the z-axis distance of 1 mm in
FDTD simulation, the running memory is tremendously in-
creased to an incredible 2022 GB. However, our simulation
uses the diffraction algorithm instead of FDTD, where the si-
mulated light field from FDTD simulation at the LC layer sur-
face is used as the initial surface, and the evolution process of
light after emerging from the LC layer is simulated by using the
vectorial Rayleigh–Sommerfeld diffraction formula [43,44] and
fast Fourier transform [45]. After employing this approach, the
running memory during simulating the light field distribution
of all observation planes after emerging from the LC layer can
be effectively reduced to 795 MB, and the total simulation time
is reduced to merely 33 s, when the size of the transverse plane
is x × y � 100 μm × 100 μm, and the z-axis range is
1–1000 μm with mesh size of dx � dy � 80 nm and
dz � 1 μm. Here we record the intensity of the light field
along the symmetry axis of the circular electrode array (across
the circle center and along the x or y axis) as the z axis changes.
The light intensity distribution in the xz plane is obtained,
and the surface of the LC layer is set to z � 0. The results from
the simulation and experiment are shown in Figs. 5(h) and 5(i),
respectively. It can be seen that the simulation results of the
longitudinal light field distribution are consistent with the ex-
periment, including the focal plane and the light field fringe.
These results confirm that we can accurately predict the light
field evolution process after the light passes through the electri-
cally stimulated LC device. Compared with commercial soft-
ware (TechWiz LCD 3D and Dimos.2D) for LC director
simulation, which first estimates the effective refractive index
distribution through the tilt angle distribution of the LC direc-
tor and then calculates the focal length by fitting the effective
refractive index distribution with the ideal parabolic lens
[46–48], the simulation method proposed in this study is more
universal, as it is capable of efficiently simulating LC devices
with complex electrode beyond the aperture electrode in this
study and predicting its diffraction behaviors, which may facili-
tate the design of an LC photonic device with customized func-
tionalities.

Theoretically, the proposed NFDM can be applied to sim-
ulate 3D models of any size by adjusting the mesh size to an
acceptable range, especially in case of complex electrodes and
stimuli with steep gradient. Moreover, the proposed method in
this study can perform the calculation of the LC device model
with tens of millions of LC director grids on ordinary personal
laptops, while maintaining the calculation time within 1 h.
However, it should also be mentioned that the proposed
method in this study may fail in the case of giant devices due
to many sophisticated factors, such as the flow of LC, the order
parameter change arising from the temperature gradient,
and the change of the LC concentration gradient caused by
gravity. Moreover, for an ultra-small device, the Landau-de
Gennes Q tensor model based on the continuous elastic model
in this article is no longer applicable, as it is necessary to
consider the interaction and thermal motion between the

discrete LC molecules. In general, the calculation model is
suitable for the simulation of LC devices with LC thickness
ranging from micrometers to millimeters and size beyond
micrometers.

4. CONCLUSION

In summary, a nonuniform finite difference method for effi-
cient and high-accuracy simulation of the LC photonic device
is proposed and verified in this study. The proposed NFDM
helps to reduce the computing resources by flexibly controlling
the mesh density and allocating more grids to the area with
steep spatial gradient of the electric field to match the electrode,
thus reducing the distortion of the electric field and the trun-
cation error of calculation. The proposed approach is acceler-
ated by using the improved successive over-relaxation method
(by 12 times), the symmetric boundary (by 4 times), the mo-
mentum gradient descent algorithm (by 3.5 times), and the
multigrid (by 3 times). Studies based on the FDTD software
prove that NFDM has higher stability and accuracy than the
FEM and traditional FDM. Subsequently, by using the method
of vectorial Rayleigh–Sommerfeld diffraction formula and fast
Fourier transform, we accurately simulate the evolution process
of the light field with low computing resources and low time
consumption. Moreover, we fabricated the sample and found
that the experimental results are consistent with the simulation
results in both the transverse and longitudinal light fields. The
simulation method proposed in this study is universal, and may
be extended to simulate LC devices with complex electrodes.
This study provides an efficient and accurate method to sim-
ulate the electrically stimulated LC photonic device and may
facilitate the design and optimization of the LC photonic device
with customized functionalities.

APPENDIX A

The elastic free energy density of the Q tensor is given as
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where �ξ1, ξ2, ξ3� � �x, y, z� is the Cartesian coordinate sys-
tem, and el ik is the Levi–Civita symbol (exyz � eyzx �
ezxy � 1, ezyx � eyxz � exzy � −1, and all other eijk � 0). The
elastic parameters Li are given as L1��k33 −k11�3k22�∕�6S2�,
L2 � �k11 − k22 − k24�∕S2, L3 � k24∕S2, L4 � 2q0 k22∕S2,
and L6 � �k33 − k11�∕�2S2�, where q0 � 2π∕p, p is the helical
pitch of cholesteric LC; k11, k22, k33, and k24 are the corre-
sponding splay, twist, bend, and saddle-splay elastic constant,
respectively. The term k24 is negligible in most parallel LC cells.
Hence, the electric free energy density of the Q tensor is
expressed as
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where ε0 is vacuum permittivity, and ε⊥ and εjj are the vertical
and horizontal components of LC permittivity, respectively.
The central difference of point (x0, y0) is given by
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where Δx and Δy are the grid sizes in the x and y directions.
The derivatives of function f �x, y� at a point (x0, y0) are ap-
proximated by the adjacent values. The variational weak-form
equations of total energy Fg are as follows:
Z
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where f g is the Gibbs free energy density, and test( ) represents
the test function of the corresponding function of FEM.

APPENDIX B: MESH DETAILS OF THE FEM
SIMULATION FOR LC DIRECTOR

COMSOL Multiphysics 6.0 is employed to calculate LC direc-
tor distribution by the finite element method, where a three-
dimensional (3D) model is built to simulate the LC director
distribution. The length (x direction) and width (y direction)
of the 3D structural unit are both 100 μm, and the x− and
y−direction boundary is set as the periodic boundary. An LC
layer with 50 μm thickness is confined between two pieces
of glass. The lower surface of the LC layer is set to 0 V,
and the upper surface of the LC layer is set to 200 V. A hole
electrode with diameter of 50 μm is also arranged on the upper
surface of the LC layer. In order to make a fair comparison with
the FDM in this study, the glass at the side of the patterned
electrode is set the same as the FDM. The glass on the other
side of the LC requires a small amount of mesh because the LC
layer is completely covered with electrodes. According to this
setting, the thickness of the glass on the upper side is
4 × 50 � 200 μm, and the thickness of the glass on the lower
side is set to 25 μm. Because the director on the upper side of
the LC layer changes dramatically, a higher mesh density is re-
quired, while the lower side changes slowly and requires a sparse
mesh (consistent with FDM). The model is meshed using a
built-in algorithm with a maximum element growth factor

of 1.2 (consistent with nonuniform FDM) and a curvature fac-
tor of 0.1. After calculation, the meshes of this model consisted
of 196,117 domain elements and 12,200 boundary elements.
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