• Photonics Research
  • Vol. 9, Issue 2, 202 (2021)
Huanhao Li1、2、†, Chi Man Woo1、2、†, Tianting Zhong1、2, Zhipeng Yu1、2, Yunqi Luo3, Yuanjin Zheng3, Xin Yang4, Hui Hui4、5、*, and Puxiang Lai1、2、6、*
Author Affiliations
  • 1Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
  • 2The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
  • 3School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore, Singapore
  • 4CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
  • 5e-mail: hui.hui@ia.ac.cn
  • 6e-mail: puxiang.lai@polyu.edu.hk
  • show less
    DOI: 10.1364/PRJ.412884 Cite this Article Set citation alerts
    Huanhao Li, Chi Man Woo, Tianting Zhong, Zhipeng Yu, Yunqi Luo, Yuanjin Zheng, Xin Yang, Hui Hui, Puxiang Lai. Adaptive optical focusing through perturbed scattering media with a dynamic mutation algorithm[J]. Photonics Research, 2021, 9(2): 202 Copy Citation Text show less
    References

    [1] I. M. Vellekoop, A. Mosk. Focusing coherent light through opaque strongly scattering media. Opt. Lett., 32, 2309-2311(2007).

    [2] E. N. Leith, J. Upatnieks. Holographic imagery through diffusing media. J. Opt. Soc. Am., 56, 523(1966).

    [3] Z. Yaqoob, D. Psaltis, M. S. Feld, C. Yang. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics, 2, 110-115(2008).

    [4] Z. Yu, J. Huangfu, F. Zhao, M. Xia, X. Wu, X. Niu, D. Li, P. Lai, D. Wang. Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media. Sci. Rep., 8, 2927(2018).

    [5] Z. Yu, M. Xia, H. Li, T. Zhong, F. Zhao, H. Deng, Z. Li, D. Li, D. Wang, P. Lai. Implementation of digital optical phase conjugation with embedded calibration and phase rectification. Sci. Rep., 9, 1537(2019).

    [6] Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, L. V. Wang. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light. Nat. Commun., 6, 5904(2015).

    [7] S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, S. Gigan. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 104, 100601(2010).

    [8] P. Lai, L. Wang, J. W. Tay, L. V. Wang. Photoacoustically guided wavefront shaping (PAWS) for enhanced optical focusing in scattering media. Nat. Photonics, 9, 126-132(2015).

    [9] Y. Luo, S. Yan, H. Li, P. Lai, Y. Zheng. Focusing light through scattering media by reinforced hybrid algorithms. APL Photon., 5, 016109(2020).

    [10] S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan. Image transmission through an opaque material. Nat. Commun., 1, 81(2010).

    [11] S. Ohayon, A. Caravaca-Aguirre, R. Piestun, J. J. DiCarlo. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging. Biomed. Opt. Express, 9, 1492-1509(2018).

    [12] I. M. Vellekoop. Feedback-based wavefront shaping. Opt. Express, 23, 12189-12206(2015).

    [13] A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics, 6, 283-292(2012).

    [14] Z. Li, Z. Yu, H. Hui, H. Li, T. Zhong, H. Liu, P. Lai. Edge enhancement through scattering media enabled by optical wavefront shaping. Photon. Res., 8, 954-962(2020).

    [15] R. Horstmeyer, H. Ruan, C. Yang. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics, 9, 563-571(2015).

    [16] H. Ruan, T. Haber, Y. Liu, J. Brake, J. Kim, J. M. Berlin, C. Yang. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping. Optica, 4, 1337-1343(2017).

    [17] N. Takai, T. Asakura. Statistical properties of laser speckles produced under illumination from a multimode optical fiber. J. Opt. Soc. Am. A, 2, 1282-1290(1985).

    [18] M. Plöschner, T. Tyc, T. Čižmár. Seeing through chaos in multimode fibres. Nat. Photonics, 9, 529-535(2015).

    [19] Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett., 109, 203901(2012).

    [20] I. N. Papadopoulos, S. Farahi, C. Moser, D. Psaltis. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber. Biomed. Opt. Express, 4, 260-270(2013).

    [21] J. Yoon, M. Lee, K. Lee, N. Kim, J. M. Kim, J. Park, H. Yu, C. Choi, W. Do Heo, Y. Park. Optogenetic control of cell signaling pathway through scattering skull using wavefront shaping. Sci. Rep., 5, 13289(2015).

    [22] A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, K. Deisseroth. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng., 4, S143-S156(2007).

    [23] O. Tzang, A. M. Caravaca-Aguirre, K. Wagner, R. Piestun. Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres. Nat. Photonics, 12, 368-374(2018).

    [24] T. Zhong, Z. Yu, H. Li, Z. Li, P. Lai. Active wavefront shaping for controlling and improving multimode fiber sensor. J. Innov. Opt. Health Sci., 12, 1942007(2019).

    [25] J. Yang, L. Li, J. Li, Z. Cheng, Y. Liu, L. V. Wang. Fighting against fast speckle decorrelation for light focusing inside live tissue by photon frequency shifting. ACS Photon., 7, 837-844(2020).

    [26] I. M. Vellekoop, A. Mosk. Phase control algorithms for focusing light through turbid media. Opt. Commun., 281, 3071-3080(2008).

    [27] J. Thompson, B. Hokr, V. Yakovlev. Optimization of focusing through scattering media using the continuous sequential algorithm. J. Mod. Opt., 63, 80-84(2016).

    [28] D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, R. Piestun. Genetic algorithm optimization for focusing through turbid media in noisy environments. Opt. Express, 20, 4840-4849(2012).

    [29] D. Wu, J. Luo, Z. Li, Y. Shen. A thorough study on genetic algorithms in feedback-based wavefront shaping. J. Innov. Opt. Health Sci., 12, 1942004(2019).

    [30] B. R. Anderson, P. Price, R. Gunawidjaja, H. Eilers. Microgenetic optimization algorithm for optimal wavefront shaping. Appl. Opt., 54, 1485-1491(2015).

    [31] H.-L. Huang, Z.-Y. Chen, C.-Z. Sun, J.-L. Liu, J.-X. Pu. Light focusing through scattering media by particle swarm optimization. Chin. Phys. Lett., 32, 104202(2015).

    [32] B.-Q. Li, B. Zhang, Q. Feng, X.-M. Cheng, Y.-C. Ding, Q. Liu. Shaping the wavefront of incident light with a strong robustness particle swarm optimization algorithm. Chin. Phys. Lett., 35, 124201(2018).

    [33] Z. Fayyaz, N. Mohammadian, M. Reza Rahimi Tabar, R. Manwar, K. Avanaki. A comparative study of optimization algorithms for wavefront shaping. J. Innov. Opt. Health Sci. Sci., 12, 1942002(2019).

    [34] L. Fang, H. Zuo, Z. Yang, X. Zhang, J. Du, L. Pang. Binary wavefront optimization using a simulated annealing algorithm. Appl. Opt., 57, 1744-1751(2018).

    [35] Z. Fayyaz, F. Salimi, N. Mohammadian, A. Fatima, M. R. R. Tabar, M. R. Avanaki. Wavefront shaping using simulated annealing algorithm for focusing light through turbid media. Proc. SPIE, 10494, 104946M(2018).

    [36] S. Cheng, H. Li, Y. Luo, Y. Zheng, P. Lai. Artificial intelligence-assisted light control and computational imaging through scattering media. J. Innov. Opt. Health Sci., 12, 1930006(2019).

    [37] R. Horisaki, R. Takagi, J. Tanida. Learning-based focusing through scattering media. Appl. Opt., 56, 4358-4362(2017).

    [38] A. Turpin, I. Vishniakou, J. D. Seelig. Light scattering control in transmission and reflection with neural networks. Opt. Express, 26, 30911-30929(2018).

    [39] J. W. Goodman. Speckle Phenomena in Optics: Theory and Applications(2007).

    [40] D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, A. P. Mosk. Focusing light through random photonic media by binary amplitude modulation. Opt. Express, 19, 4017-4029(2011).

    [41] Y. Shen, Y. Liu, C. Ma, L. V. Wang. Sub-Nyquist sampling boosts targeted light transport through opaque scattering media. Optica, 4, 97-102(2017).

    [42] H. Yu, K. Lee, Y. Park. Ultrahigh enhancement of light focusing through disordered media controlled by mega-pixel modes. Opt. Express, 25, 8036-8047(2017).

    CLP Journals

    [1] Qian Zhao, Shijie Tu, Qiannan Lei, Chengshan Guo, Qiwen Zhan, Yangjian Cai. Creation of cylindrical vector beams through highly anisotropic scattering media with a single scalar transmission matrix calibration[J]. Photonics Research, 2022, 10(7): 1617

    Huanhao Li, Chi Man Woo, Tianting Zhong, Zhipeng Yu, Yunqi Luo, Yuanjin Zheng, Xin Yang, Hui Hui, Puxiang Lai. Adaptive optical focusing through perturbed scattering media with a dynamic mutation algorithm[J]. Photonics Research, 2021, 9(2): 202
    Download Citation