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Optical imaging through or inside scattering media, such as multimode fiber and biological tissues, has a sig-
nificant impact in biomedicine yet is considered challenging due to the strong scattering nature of light. In the
past decade, promising progress has been made in the field, largely benefiting from the invention of iterative
optical wavefront shaping, with which deep-tissue high-resolution optical focusing and hence imaging becomes
possible. Most of the reported iterative algorithms can overcome small perturbations on the noise level but fail to
effectively adapt beyond the noise level, e.g., sudden strong perturbations. Reoptimizations are usually needed for
significant decorrelation to the medium since these algorithms heavily rely on the optimization performance in
the previous iterations. Such ineffectiveness is probably due to the absence of a metric that can gauge the deviation
of the instant wavefront from the optimum compensation based on the concurrently measured optical focusing.
In this study, a square rule of binary-amplitude modulation, directly relating the measured focusing performance
with the error in the optimized wavefront, is theoretically proved and experimentally validated. With this simple
rule, it is feasible to quantify how many pixels on the spatial light modulator incorrectly modulate the wavefront
for the instant status of the medium or the whole system. As an example of application, we propose a novel
algorithm, the dynamic mutation algorithm, which has high adaptability against perturbations by probing
how far the optimization has gone toward the theoretically optimal performance. The diminished focus of scat-
tered light can be effectively recovered when perturbations to the medium cause a significant drop in the focusing
performance, which no existing algorithms can achieve due to their inherent strong dependence on previous
optimizations. With further improvement, the square rule and the new algorithm may boost or inspire many
applications, such as high-resolution optical imaging and stimulation, in instable or dynamic scattering environ-
ments. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.412884

1. INTRODUCTION

Optical focusing through or within scattering media has been
long desired yet has been considered challenging until the in-
vention of optical wavefront shaping [1,2]. As reported so far,
wavefront shaping techniques can be categorized into optical
phase conjugation (OPC) [3–6] and iterative wavefront shap-
ing (including the transmission matrix measurement method)
[7–9]. OPC can achieve rapid optical focusing (∼1 ms), but
diffusive light can only be focused back to the original light
source, and the system requires accurate alignment to fulfill

rigorous phase conjugation. In comparison, iterative wavefront
shaping can function more freely, even though more iterations
and measurements are needed. With a much simpler setup to
control the light in a larger field of view, iterative wavefront
shaping allows arbitrary image transmission [10] and raster
scanning of the focal point [11] through/inside scattering me-
dia. In this technology, photons are modulated by a spatial light
modulator (SLM) before they are multiply scattered and be-
come diffusive in the medium. A series of modulation patterns
is displayed on the SLM under the control of an iterative
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optimization algorithm, and an optimal phase pattern is ob-
tained when the feedback signal is maximized, indicating that
the scattering-induced phase distortions are compensated as
much as possible [12–14]. This technology has broad applica-
tions in biomedicine, for instance, in deep tissue imaging [6,15],
phototherapy [16], laser surgery, and photoacoustic imaging [8].
Moreover, wavefront shaping has been used to control the light
transmission through a multimode fiber (MMF), in which
speckles arise due to the intermodal interference and mode
dispersion [17,18]. MMF-based biomedical applications, such
as endoscopic imaging [19,20] and optogenetics [21,22], are
therefore progressively developed. Demonstrations based on
MMF for wavefront shaping are therefore of interest since all
these applications might be affected by the perturbations to
the MMF on different levels, including consistently environ-
mental noises (e.g., temperature change, pressure) and sudden
strong perturbations (e.g., mechanical disturbances or biological
motions). Those perturbations are due to the regular and/or
irregular motion of the scattering medium or the system. Such
instability is also a major factor that impedes wavefront-shaping-
assistedMMF from wider applications, since the modulated op-
tical field through the MMF will accordingly decorrelate. The
decorrelation essentially indicates that the transmission matrix
(TM) of the MMF is highly susceptible to perturbations, such
as bending, twisting, or temperature change [23,24].

To combat against the instability, a carefully designed setup
can be utilized to separate the target photon from the pertur-
bations due to the instable medium [25]. On the other hand,
an efficient optimization algorithm for wavefront shaping is
also required. Various algorithms have been reported and dis-
cussed, such as the continuous sequential algorithm (CSA)
[26,27], the stepwise sequential algorithm (SSA) [26], the par-
titioning algorithm (PA) [26], the genetic algorithm (GA)
[9,28–30], particle swarm optimization (PSO) [31–33], the si-
mulated annealing algorithm (SA) [34,35], and some artificial-
intelligence-assisted algorithms [36–38]. These methods have
realized superior light focusing and even noise-resistance ability.
But their optimization mechanisms originate from numerical
optimization without specific consideration about the physics
behind the strong scattering process. These methods heavily
rely on (or learn from) the net performance accumulated from
previous iterations, especially the GA, which needs a large pool
containing many random phase/amplitude masks to initiate op-
timization. The “learning experience” is highly specific to the
current status of the medium or the system, and hence the op-
timization can merely adapt and generalize to the subtle insta-
bility of the medium, e.g., on the environmental noise level
[28]. Once the perturbations to the medium are further
strengthened beyond the noise level, e.g., a sudden perturba-
tion, the transmission matrix of the medium may be altered
significantly, and the resultant optical focus probably fades
or even disappears. In this regard, another optimization is inevi-
table since the modulation patterns optimized in previous steps
(without perturbations) are now weakly correlated with the new
optimization condition that matches the state of the perturbed
medium. An adaptive optimization algorithm is therefore de-
sired, aiming to avoid strong dependency on the optimization
from previous iterations.

Probably the fact that existing algorithms are less adaptive to
perturbations is because of the absence of a practical metric that
can directly relate the instant focusing status with the accuracy
of the optimized wavefront. Such possibility is theoretically ex-
plored in this study based on the fully developed speckle pat-
terns, which can be easily observed within or behind strong
scattering media, such as an MMF or biological tissue. The in-
tensity of a fully developed speckle pattern is governed by the
negative exponential decay. As a result, phasors or elements in
the corresponding TM of the medium follow a circular
Gaussian distribution as discussed by Goodman [39]. Based
on this plain assumption, we derive and define a metric called
error rate (denoted as r), specific for the binary-amplitude
modulation, to estimate how many pixels on the SLM are
wrongly set based on the concurrently measured optical focus-
ing: r is physically related to the focusing performance as mea-
sured by peak-to-background ratio (PBR) by a simple square
rule. This metric can imply how far the optimization has gone
towards the theoretically optimal phase compensation, namely,
the ideal single-point focusing. Therefore, based on the real-
time probed error rate instead of parameters inherited or accu-
mulated from previous iterations, a novel algorithm called the
dynamic mutation algorithm (DMA) is developed in this study
as an application of the proposed practical metric. The optimi-
zation based on the error rate can automatically adapt strong
perturbations: compared with other algorithms, the proposed
DMA is advantageous, in both simulations and experiments,
by its high adaptability and unique recovery ability against dy-
namic changes. Also, the diminished focus under perturbations
(for example, twisting an MMF) can be effectively regained
without additional operations, such as repeating the iterative
optimization. With such a guiding metric, the new algorithm
may inspire further optimization of optical focusing in dynamic
media from a practical perspective and boost more applications
of wavefront shaping in living biological tissue.

2. PRINCIPLE

The DMA is an optimization method based on real-time ex-
perimental data instead of results from previous iterations, lead-
ing to high adaptability to dynamic changes. The key of the
algorithm is to estimate the error rate of the corresponding am-
plitude mask, which implies the extent that the measured re-
sults deviate from the theoretical one, and then guide the
optimization towards the optimal solution. In this section,
we will elucidate the concept of the error rate and the
DMA, followed by how the error rate can be used to modify
the amplitude masks to achieve adaptive focusing. The steps
involved in the optimization will also be explained.

A. Error Rate and Square Rule
Beginning from the ideal focusing, the optimized wavefront,
modulated by a binary-amplitude mask, is unique due to
the deterministic transmission matrix of a medium (T ), with
elements tmn. For simplicity, the input optical field is considered
a plane wave (with all phases set to zero) and modulated by a
binary-amplitude-only SLM, i.e., digital micromirror devices
(DMDs). Denoting the optimal wavefront Eop,1 �
�e1, � � � , eN �T as the optimal modulation for optical focusing
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at the first output channel, the optical field (Uf ,1) with the first
output channel focused is governed by

Uf ,1 � TEop,1 �
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where upeak and ubg represent the optical field of the focus (with
peak intensity) and the nonfocal regions (the background).
Then, by dividing the N (N ≫ 1) input channels into two
parts with ratio r �0 ≤ r ≤ 1�, i.e., rN and �1 − r�N , the peak
intensity at the optical focusing (upeak) can be formulated as

jupeakj2 �
�����
XN
i�1

t1iei

�����
2

�
�����
XNr

p�1

t1pep �
XN

q�rN�1

t1qeq

�����
2

�jrN ht1pepi � �1 − r�ht1qeqij2, (2)

where hi is the operator of the ensembled average. Since the
total input channels are randomly divided into two parts,
the indices p and q indicate the reordered elements for two di-
visions: rN input channels, picked from the total N input
channels, are reordered with index p; the rest of the
�1 − r�N input channels are reordered with index q.
Considering the binary-amplitude modulation, the optimal
amplitude of the elements in Eop,1 is determined by the first
row in T and element (ei) and only turned “on” if the real part
of t1i, denoted as Ri, is greater than zero:

ei �
�
1,
0,

Ri > 0
others

: (3)

In this regard, both ht1pepi and ht1qeqi positively contribute to
the focusing with optimal modulation. Elements in T are gov-
erned by the circular Gaussian distribution [39], i.e., the real
part (R) and imaginary part (I) of T are statistically indepen-
dent and follow the probability distribution density f �x� �
exp�−x2∕2σ2�∕

ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
, where σ is the standard deviation of

the distribution. With Eq. (3), only elements in T with positive
real parts (R > 0) will be selected in the calculation. Since the
imaginary part is independent of the real part, the selected el-
ements with R > 0 have the imaginary part (I ) fulfilling
−∞ < I < �∞. The terms ht1pepi and ht1qeqi from Eq. (2)
can thus be expressed as
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where j � ffiffiffiffiffi
−1

p
. By substituting Eq. (4) into Eq. (2), the op-

timal peak intensity can be reduced to

Ipeak � jupeakj2 �
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Equation (5) is consistent with previously reported studies
[40,41] with binary-amplitude modulation. Nevertheless, if
the portions of the rN input channels are oppositely displayed,
these input channels, with Ri < 0, are “on” and negatively
contribute

ht1pepi � hRi � jhIi �
Z

0

−∞
Rf �R�dR � j

Z �∞

−∞
If �I�dI

� −
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2π

p : (6)

Combining Eqs. (3), (5), and (6), the peak intensity with the
rN incorrectly modulated input channel (I peak,r) is revised to

I peak � jupeak,r j2 �
����−r Nσffiffiffiffiffi

2π
p � �1 − r� Nσffiffiffiffiffi

2π
p

����
2

� �1–2r�2 N
2σ2

2π
: (7)

In addition, the elements in the TM are statistically indepen-
dent [40], and therefore the optimal modulation for the first
output channel (even with rN the incorrect input channel)
does not affect the statistics of the other channels. Following
the central limited law, the variance of ubg is N∕2 times (the
number of “on” input channels) the variance of tmi, �m ≠ 1�,
i.e., Var�tmi�, so that the background intensity (I bg) is
expressed as

I bg � hjubgj2i � Var�ubg� �
N
2
Var�tmi� �

N
2
2σ2 � Nσ2:

(8)

Finally, a relative peak-to-background ratio (PBR), denoted as
η 0, due to the r-ratio incorrect modulation, can be obtained by

η 0 � ηr
η0

� I peak,r∕I bg
I peak∕I bg

� �1–2r�2N∕2π
N∕2π

� �1 − 2r�2, (9)

where η0 (η0 � N∕2π) is the theoretical PBR and ηr
[ηr � �1 − r�2N∕2π] is the PBR with r-ratio of pixels incor-
rectly modulating the input wavefront. For simplicity, the re-
lationship indicated by Eq. (9) is termed the “square rule” for
binary-amplitude modulation. Practically, the square rule can
be generalized to the case in which the r-ratio of pixels oppo-
sitely modulates the wavefront in any given modulating masks
rather than only in the optimal mask. This generalization will
be proved experimentally in Section 2.E.
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Mathematically, the relative PBR is essentially related to
Pearson’s correlation coefficient (ρr ) between the optimal mask
(Eop,1) and a mask with r-ratio incorrect modulation (Er,1).
Their elements, i.e., ei and er,i for Eop,1 and Er,1, respectively,
obey the symmetric Bernoulli distribution, i.e., e∼Bernoulli
(p � 0.5), so that both heii and her,ii are 0.5 and
heier,ii � 0.5�1 − r�. By defining δf � f − hf i, ρr can be
formulated as

ρr �
hδei × δer,iiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hδeii2hδer,ii2

p � 4heier,ii − 1 � 1–2r: (10)

With Eqs. (9) and (10), the ratio (r) of the oppositely modulat-
ing channels, termed the error rate, can be directly estimated
from the experimental PBR (ηr ) via a simple relationship if
the range of the error rate is limited below 0.5:

r � �1 −
ffiffiffiffi
η 0

p
�∕2: (11)

Notably, the value of r can increase above 0.5, and the η 0 will
increase accordingly as indicated by Eq. (9), which is symmetric
regarding r � 0.5. For r > 0.5, the focusing performance will
be equivalently the reverse of the selection of Eq. (3): the element
(ei) in the optimal mask is turned “on” for Ri < 0, and the ef-
fective error rate becomes 1 − r. This is because turning the el-
ements “on” for either Ri < 0 or Ri > 0 shares equivalent
performance for optical focusing according to the symmetry
of the circular Gaussian distribution. Therefore, considering
Eq. (3), it is straightforward to use Eq. (11) (r ≤ 0.5) to estimate
the ratio of incorrectly modulating pixels.

Experimentally, the estimated error rate (r) of any optimized
pattern is obtained as follows: an N -element DMD is used to
modulate the input wavefront, and then a “theoretical PBR” is
calculated by η0 � N∕2π; the “experimental PBR” (ηex) is ob-
tained from the instant speckle pattern, i.e., a focus at the target
position; finally, the experimental error rate for each focusing
optimization can be obtained by substituting Eq. (10) into
Eq. (11):

r � �1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
ηex∕η0

p
�∕2 � �1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πηex∕N

p
�∕2: (12)

B. Mutation Rate
Benefitting from Eq. (9), the percentage of DMD elements
with incorrect modulation in the mask can be directly esti-
mated. An ideal solution, or mask, can be obtained if the in-
correct elements are corrected. That said, the exact positions/
indices of these elements are unknown. Inspired by the muta-
tion process in the GA, having a suitable mutation rate to
change the state of modulating elements regarding the error rate
may be able to improve the optimization.

In the GA, the mutation rate is usually preset in a decaying
manner, and it gradually becomes smaller regardless of the ac-
tual optimization performance or status. In the proposed
DMA, the mutation rate is adjusted dynamically according
to the error rate so that the information about how the instable
medium instantly affects the optimized mask can be consid-
ered. One more benefit of integrating the error rate is that,
in every iteration, the number of elements to be mutated
(Nμ) can be well controlled below the number of the wrongly
modulating elements (Nr), i.e., Nμ ≤ Nr. As an example to
scale the mutation rate, the mutation rate [μ�s�] in the sth iter-
ation can be simply set to be proportional to the instant error

rate [r�s�] with a mutation constant (C) that is greater than
unity [Eq. (13)]. To generate new DMD patterns in the sth
iteration, a total number of Nμ�s� elements in the DMD mask
generated in the �s − 1�th iteration are randomly selected and
mutated by reversing the element state of on/off or equivalently
following Eq. (14):

μ�s� � r�s�∕C , (13)

e�s� ← 1 − e�s−1�: (14)

The function with respect to the mutation constant, Eq. (13), is
to bound the mutation rate between 0.5∕C and 0, if the error
rates at the beginning and at the end of the optimization are
assumed to be 0.5 and 0, respectively. The mutation constant is
the only parameter needed to be set before optimization; a
smaller mutation constant is suggested in instable environ-
ments to provide a larger range of mutation rates. The mutation
rate is autotuned by the algorithm within the range in response
to the actual situations, so as to increase the chance for the in-
correct elements to be mutated and lead the optimization to-
wards the theoretical result.

C. DMA Workflow
The block diagram in Fig. 1 shows the typical workflow of the
DMA for the binary-amplitude modulation with DMD. First,
all DMD pixels are set to be 1 (“on” state). The error rate is
found according to Eq. (12), and the mutation rate is com-
puted through Eq. (13). Then the mask is mutated to generate
a new DMD pattern with Eq. (14). Then the error rate is
assessed again based on the instantly measured focus perfor-
mance, i.e., the PBR. If the error rate becomes smaller, which
means the PBR is improved, a new mutation rate is calculated
according to the error rate. If there is an abrupt rise of the error
rate, probably caused by the changes of medium of interest, the
mutation rate will be updated as well. Otherwise, if the error
rate is just slightly fluctuating and shows no improvement in
the PBR, the current mask is mutated again with the same

Fig. 1. Block diagram showing the workflow of the dynamic muta-
tion algorithm (DMA).
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mutation rate. The mutation rate is not updated in this case in
order to minimize the error rate fluctuations. This process is
repeated until the PBR of optical focusing saturates or plateaus.

D. Experimental Setup
The experimental setup used in this study is shown in Fig. 2(a).
A continuous-wave 532 nm laser source (EXLSR-532-300-
CDRH, Spectra Physics, USA) is used to illuminate the DMD
(DLP4100, Texas Instruments Inc., USA). A pair of convex
lenses (L1 and L2) is used to expand the light beam, such that
it covers all pixels on the DMD. Another pair of convex lenses
(L3 and L4) is used to demagnify the beam after it is modulated
by the DMD. After that, the shrunk modulated light is focused
with a 40× objective lens (NA = 0.65) onto a scattering sample.
A CMOS camera (Blackfly S BFS-U3-04S2M-CS, FLIR,
Canada) is placed behind the scattering sample, and an image
is captured in each measurement for the calculation of the in-
stant PBR and the error rate. The PBR can be calculated by
dividing the intensity of the target mode by the average back-
ground intensity. A 1 m bare optical MMF (SUH200, Xinrui,
China, with diameter � 200 μm, NA � 0.22) is chosen as the
scattering sample, with two collimators (PAF2-A4A, Thorlabs,
USA) and a fiber rotator (HFR007, Thorlabs, USA). During
the optimization for optical focusing, 64 × 64 input modes are
used (16 × 25 pixels on the DMD are grouped as a mode, and
each pixel is 10.8 μm × 10.8 μm), and every algorithm is run

for 10,000 measurements without stop, even if rotation to the
fiber is applied.

In the following sections, the parameters of the investigated
algorithms used for the simulation and experiment are set to be
the same as follows. For the DMA, the mutation constant in
Eq. (13) is set to 200. For the GA, the population size is 20
and the offspring size is 10. The initial mutation rate is 0.1,
which decays exponentially to a final value at 0.001. For the
CSA, there is no preset parameter, whose input modes are opti-
mized one by one with a linear rastering manner [26,27]. These
initial parameters related to specific algorithms are summarized
in Table 1. All these algorithms are implemented for 10,000
measurements, and each measurement is set to spend 0.2 s.

As an example, speckle before and after DMA optimization
is shown in Fig. 2. Figure 2(b) shows the speckle field before
optimization, where the PBR at the target position (central
point) is around 3. After wavefront shaping optimization
guided by the DMA, the focus has a PBR enhanced to 120
as shown in Fig. 2(c). The full width at half-maximum
(FWHM) of the focus is 15.2 and 14.5 μm in the horizontal
and vertical directions, respectively.

E. Verification of the Square Rule
Numerical and experimental proofs of the square rule have
been done to validate its practical implications. The square rule
can be simple and straightforward [denoted as “theoretical pre-
diction” in Figs. 3(a) and 3(b)], and it can be computationally
re-created in simulation by using a TM whose elements follow
the circular Gaussian distribution [denoted as “ideal simula-
tion” in Fig. 3(b)]. Yet, to prove the square rule experimentally,
a series of error rates is selected, i.e., 0%, 10%, 20%, 30%,
40%, and 50%, and each data point is the average of five ex-
ecutions. First, we use a TM-based method [42] to generate an
optimal DMD mask (set as r � 0) for an optimized focus
through an MMF, and then we mutate the optimal mask with
r-ratio of pixels to test the corresponding focusing performance,
i.e., PBR. As shown in Fig. 3(a), the experimental η 0−r curve is
shaped like a parabola with a right shift away from the theo-
retical curve, η 0 � �1 − 2r�2. Such a shift may be attributed to
the instability of the MMF, since the instability effect can be
accumulated during the process of TM measurement. The
measured TM may be subjected to deviation from the ideal
assumption that the elements in the TM of the scattering sam-
ple follow an ideal circular Gaussian distribution. In view of
this, the real part of the measured transmission matrix of
the MMF is found to have a right-shifted Gaussian distribution
(mean � 0.002 and standard deviation � 0.04) [inset in
Fig. 3(a)]. Based on this TM measurement, a TM whose real

Fig. 2. (a) Experimental setup. L1, f � 60 mm; L2 and L3,
f � 250 mm; L4, f � 50 mm; DMD, 1920 × 1080 digital micro-
mirror device; OBJ, 40× objective lens (NA = 0.65); MMF, 1 m multi-
mode bare optical fiber (diameter � 200 μm, NA � 0.22). A fiber
rotator was added in the fiber rotation experiment. C1 and C2 are
the fiber collimators. (b) Speckle field before optimization. (c) Focus
formed after optimization by the DMA (PBR � 120). The yellow
lines indicate the profiles of the focus along the horizontal and vertical
directions.

Table 1. Initial Parameters Set for the DMA, GA, and CSA

Algorithm Initial Parameter

DMA Mutation constant � 200

GA

1. Population size � 20
2. Offspring size � 10
3. Initial mutation rate � 0.1
4. Final mutation rate � 0.001
5. Decay constant � 200

CSA None
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part follows the Gaussian distribution with mean � 0.002 and
standard deviation � 0.04 is generated to form an optimized
focus with a series of error rates to degrade the performance.
The induced η 0−r curve [denoted as “simulation” in Fig. 3(a)]
matches well with the experimental one. Notably, in our exper-
imental setup, the TM measurement needs around 30 min to
complete, and the obtained real part of TM is used to generate
the optimal mask. Decorrelation of the medium is hardly
ignored and inevitably coupled into the measured TM. In ad-
dition, all the mutated masks (with r � 10%−50%) are gen-
erated from the same optimal mask after the TM measurement
is completed. These masks therefore carry the information of
medium instability from the TM measurement. Furthermore,
these masks are sequentially displayed on the DMD to
modulate the wavefront, which also costs time. When the case
of r � 50% is tested, the medium has been altered and

decorrelated from the status when the case of r � 0 is tested.
This may imply that the right shift of the experimental η 0−r
curve, or the unsatisfactory optimization result, can be attrib-
uted to the instable medium represented by a biased or
shifted TM.

Nevertheless, the instable medium (on the noise level) can
still be governed by the square rule to some extent, but it fails to
maintain accuracy. That is because the square rule is based on
an unchanged and stable medium. Therefore, to experimentally
recreate the square rule, at least, the time span between the gen-
eration of the optimal mask and mutated mask is limited within
the decorrelation window of the medium. For example, an op-
timal mask is generated for every error rate investigation during
the experiment. By doing so, the instable effect due to the prac-
tical medium can be almost eliminated, as shown in Fig. 3(b),
where the η 0−r curve attained from experiments matches well
with the theoretical curve as well as the ideal simulation curve.
Therefore, the square rule functions well in a real-time repre-
sentation, and in other words, the error rate can provide an
effective instant metric to evaluate the distance to the ideal op-
timal optimization. That will provide a plain yet universal per-
spective to analyze the imperfect focusing performance for the
scattering medium, even if it is heavily perturbed.

3. RESULTS

A. Simulation
Simulations are done to evaluate the performance of the DMA,
which is compared with two representative existing algorithms,
i.e., the GA and the CSA. In addition to their popularity, the
GA and CSA are selected because they share some similarities
with the DMA. Both the DMA and GA have a mutation
process and target optimization in instable environments.
Meanwhile, the DMA and CSA are straightforward algorithms
that do not rely much on previous results. Simulations with the
DMA, GA, and CSA have been performed under various con-
ditions of different levels of noise, and the results are compared
based on the PBR throughout a fixed number of measurements
(or iterations). Whenever the intensity of the target mode is
measured, it is counted as one measurement, and the GA usu-
ally needs several measurements for one iteration. Each curve in
the plots is an averaged result of 50 executions with a new trans-
mission matrix generated to simulate the scattering process for
every execution. N � 64 × 64 input modes (modulating ele-
ments for binary-amplitude modulation) are used, and the out-
put mode at the center is chosen for optimization.

1. Influence of Noise Level
In this section, the algorithms are compared under different
levels of noise. Additive white Gaussian noise is added in every
intensity measurement to mimic the instability of the optical
system in the actual environment [28]. The Gaussian noises,
with standard deviations of 30% and 60% of the initial average
intensity hI 0i, are set to represent the low-noise and high-noise
situations, respectively.

Figures 4(a)–4(c) show the simulation results under the
noise-free, low-noise (0.3hI0i), and high-noise (0.6hI 0i) con-
ditions, respectively. In the noise-free and low-noise situations,
the DMA has the fastest growth of the initial PBR and achieves
a high PBR. Although the CSA obtains the highest final PBR in

Fig. 3. Relative PBR error rate curves (η 0−r curve). The curve based
on the theoretical prediction following the derived square rule is plot-
ted in dashed lines in both (a) and (b). In (a), the blue-diamond line
shows the optimization based on the TM measured at r � 0, and the
instable effect is included without remeasuring the TM for other error
rates; the red-diamond line is based on the simulation with a TM,
whose real part distribution is subjected to a shift (the mean of the
Gaussian distribution is shifted from 0 to 0.002 in the inset). In
(b), the optimal mask for each investigated error rate is reobtained
to eliminate the instable effect in experiments (blue-diamond line)
and simulations (red-diamond line), matching well with the theoretical
η 0 � �1–2r�2 curve. Relative PBR for each error rate was repeated for
five executions, and the error bars show the standard deviation of the
measurements.
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the noise-free case, its performance declines drastically with
increased noise level. In the high-noise situation, the GA, ben-
efitting from its large population of optimizing masks, exhibits
its superior noise-resisting ability. Meanwhile, the DMA can
also reach a comparable level of PBR without such a large pop-
ulation as presented in the GA. Wavefront optimization guided
by the error rate is therefore immune to the need for a large
population.

2. Influence of Transmission Matrix Change
Apart from the noise caused by the instability of the optical
system, optimization results can be greatly affected by the in-
stability or slight movement of the scattering medium. To
simulate this situation, a 25% right shift of the scattering
medium was implemented at the 5000th measurement. The
scattering medium was represented by an M outputmodes ×
N inputmodes transmission matrix. M × 0.25N new ele-
ments, following the same circular Gaussian distribution, are
generated and inserted to the left of the matrix. The right
25% of the original matrix elements are removed so that a

new M × N transmission matrix to mimic the shift of the
medium is formed. Different from the noise addition process,
which only affects the intensity measurement, the shift also
leads to changes in the transmission matrix. Simulations are
done in noise-free, low-noise, and high-noise situations. The
simulation parameters used for the algorithms here are the same
as those mentioned in Section 3.A.1. Figures 4(d)–4(f ) show
how the DMA, GA, and CSA respond to the shift in the trans-
mission matrix.

As seen, right after the transmission matrix is changed, there is
a sudden drop of PBR in all three algorithms. The GA fails to
adapt to the sudden change of the TM shift for all three inves-
tigated noise conditions, which is associated with the mechanism
of the GA: the offspring (amplitude masks) with lower cost (in-
tensity) in the population is replaced, and the best offspring is
always kept [28]. Also, the whole population is generated based
on the medium status before the TM shift, whose dependency
and correlation regarding the largely shifted TM are relatively
low. Therefore, when it encounters a relatively large enhance-
ment drop, it is hard to produce offspring with cost (i.e., the
PBR) larger than the former best one, which makes the optimi-
zation trapped in a local maximum. In contrast, the DMA and
CSA successfully recover the focus after the TM shift under the
noise-free and low-noise conditions. Such achievement is prob-
ably due to their absence of a pool with a large population, whose
information is strongly related to the status of the medium before
the TM shift. Or equivalently, the population size of the DMA
and CSA is 1, so the modulating mask can be instantly guided by
the information from the sudden shift without constraints from
the other masks in the pool. Under the high-noise condition, the
DMA is the only algorithm that can adapt to the sudden change
and bounce back to the original level after∼5000measurements.
The CSA, limited by its weak noise-resisting ability, fails to tackle
the high-noise conditions.

As a comparison, the square rule, providing the DMD
error rate from the instant PBR, shows its advances to deal with

Fig. 5. Experimental results of the DMA (red solid curve), GA
(black dashed curve), and CSA (green dotted curve) focusing perfor-
mance against strong noise.

Fig. 4. Simulation results of the DMA, GA, and CSA under different conditions: (a) noise-free; (b) low-noise: 0.3hI 0i; (c) high-noise: 0.6hI 0i;
(c)–(f ) 25% right shift of the transmission matrix (at the 5000th measurement) applied to noise-free, low-noise, and high-noise conditions.
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different levels of noise conditions and sudden changes. In
the next section, experimental performance will be further
discussed.

B. Experiment

1. Focusing Against Strong Noise
With external perturbations on the noise level, the optimiza-
tions for single-point focusing via the DMA, GA, and CSA
are shown in Fig. 5. The final PBRs that the algorithms
achieved can be similarly divided into two groups, i.e., DMA
and GA with effective focusing, and CSA with weak effective-
ness, compared to the simulation results in the situation with
noise of 0.6hI 0i [Fig. 4(c)]. Both the DMA and GA demon-
strate their robustness in a noisy environment. The DMA
shows a higher initial PBR rate and reaches its optimal state after
around 5000 measurements. The GA transcends the DMA at
around the 7500th measurement. The CSA has a slow initial
PBR rate, as the optimization starts from the pixels at the edge
of the mask, which contributes less to the optimization due to
the Gaussian beam used in the experiment. The contribution
from the modulating element increases when it comes to the
central part of the mask, and then it slows down again and even-
tually reaches its maximum when the process approaches an-
other end of the mask. The CSA is sensitive to strong noise
[33], so it cannot obtain a PBR as high as the other two
algorithms.

2. Focusing Against Strong Perturbations
With more apparent perturbations, e.g., a slight movement, a
bending, or a small rotation to the MMF, the corresponding
TM can be significantly changed and the speckle patterns de-
correlated. If that occurs during the experiment, the optimiza-
tion process is disrupted, and the resultant focal spot may be
ruined. In this section, experiments were done to study how
perturbations, with rotation to the MMF as an example, affect
the optimization, and how different algorithms respond to such
heavy instability. The same experimental setup was used with
an additional fiber rotator, which can rotate the MMF with
various angles.

The relationship between the degree of rotation to the fiber
and the corresponding PBR drop is shown in Fig. 6(a).
Different degrees of rotation (2.5°, 5°, 7.5°, 10°, 12.5°, and
15°) were introduced when the PBR reached 100. Notably,
the optimization algorithms were kept running during the
whole optimization and not commanded to stop before and/
or after the rotations. As the MMF is altered by the rotation,
the PBR drops immediately as seen in Fig. 6(c). Moreover, the
more the fiber is rotated, the larger the percentage drop for the
PBR. This indicates that the corresponding TM is altered sig-
nificantly due to the fiber rotation. By applying the DMA to
optimize the focus, the optimization can automatically adapt to
the degraded focus without re-running the optimization pro-
cess. As shown in Fig. 6(c), the DMA adapts to the focus deg-
radation with various degrees of fiber twisting, i.e., 2.5°, 5°, and
7.5° rotation corresponding to ∼20%, ∼40%, and ∼60% PBR
drop. The DMA is always able to recover the PBR to the value
before perturbation regardless of how much the PBR has
dropped. Figure 6(b) shows that the number of measurements
required for the PBR to rebound to the level before perturba-

tions increases with respect to the rotation angle. It again val-
idates that strong perturbations can significantly change the
status of the medium, which poses challenges to any iterative
algorithm. The DMA, on the other hand, shows critical advan-
tages over current popular algorithms.

As an example to study how the DMA, GA, and CSA com-
bat against the heavy instability of the MMF, a 5° rotation for
the MMF was implemented at the 5000th measurement for
these three algorithms. Figure 7 shows how the algorithms per-
form throughout the experiments, and Fig. 7 shows the focal
spots before optimization (zeroth measurement), right before
fiber rotation (5000th measurement), right after fiber rotation
(5001st measurement), and after reoptimization (15,000th

Fig. 6. (a) Relationship between fiber rotation and PBR drop.
(b) Measurement required to rebound for different degrees of fiber
rotation. Each dot in (a) and (b) is averaged from five executions,
and the error bars show the standard deviation of the measurements.
The optimizations in (a) and (b) are realized by the DMA.
(c) Experimental focusing performance of the DMA in response to
2.5°, 5°, and 7.5° fiber rotation.
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measurement). The experimental results agree well with the
simulation results in Section 3.A: the DMA and CSA show
their recovery abilities. The DMA rebounds soon after the
rotation and takes around 4000 measurements to regain the
PBR it achieved before the rotation, and the resultant optical
focus is as bright as, if not brighter than, the focus before per-
turbation (Fig. 8). Comparably, the CSA does not recover right
away after the rotation. It starts to recover after around 6250
measurements.

The recovery efficiency of the CSA may depend on when
the perturbation occurs. In the experiment, as the perturbation
is induced when the optimizing elements are near the edges of
the DMD, the recovery speed is slow. More importantly,
merely changing one element for each measurement in the
CSA is not efficient to overcome the instability since the pos-
itive contribution from one element is probably below the noise
level. In contrast, the GA cannot obtain further PBR after the

rotation, as the optimization is trapped in the local maximum
due to three reasons. First, the optimizing masks in the
population library are merely based on the medium status be-
fore perturbations. Second, the decorrelation due to 5° rotation
cannot be tolerated or generalized from that of the population
generated via GA. Third, the mutation process in the GA is not
adaptive to the sudden perturbations during optimization since
the mutation rate in the GA is exponentially decayed regardless
of the focus degrading. Collectively, the DMA can effectively
battle those defects inherently embedded in the CSA and GA,
which are also shared by most of the popular algorithms.

4. DISCUSSION

As seen, the simulation and experiment results have demon-
strated the high adaptability of the DMA. It performs compa-
rably with the GA in a noisy environment and overcomes the
heavy perturbations with a robust recovery ability. Apart from
this distinctive adaptability, the ease of implementation is an-
other advantage of the DMA. For the GA, several key param-
eters, such as population size, offspring size, and mutation rates,
need to be adjusted appropriately at the beginning [28].
However, in DMA, only one parameter is required to be
set, which is the mutation constant, a number bounding the
mutation rate. Benefitting from the error rate and the square
rule, the optimization error in the modulating mask can be
easily quantified, causing the whole optimization process to
be straightforward. It is simply based on real-time measure-
ments, and it is less likely to be affected by the improper se-
lection of parameters. Also, the error-rate-based DMA does not
strongly depend on the modulating mask in previous iterations,
and therefore adaptability can be effectively achieved to deal
with dynamic media. As an example of the square rule’s

Fig. 7. Focusing performance of the DMA, GA, and CSA in re-
sponse to 5° fiber rotation.

Fig. 8. Focal spots at four different stages with different algorithms: before optimization (zeroth measurement), before fiber rotation (5000th
measurement), right after 5° fiber rotation (5001st measurement), and after reoptimization (15,000th measurement). The 150 μm scale bar is
applicable to all images in this figure.

210 Vol. 9, No. 2 / February 2021 / Photonics Research Research Article



applications, the DMA does show its capability to adapt to
strong and/or sudden perturbations benefitting from the use
of the practical metric, the error rate. Note that the metric
can also be incorporated into other optimization methods, such
as the GA, to improve adaptability.

Although only one of the numerical optimization methods,
i.e., the GA, is chosen for demonstration in this study, others,
such as the SA and PSO, are similar. Including in their pools a
large population of masks, the mechanisms to generate new
modulating patterns originate from the philosophy of numeri-
cal optimization: (1) the portion of the modulating elements to
be mutated is preset or decays with certain rules; (2) the moni-
tored PBR is used to produce an acceptance probability of the
newly generated masks or to update the mask. These two mech-
anisms ensure the generalization to the noise, even on the scale
of hI 0i [33], around a specific equilibrium of the medium.
However, a sudden strong perturbation behaves differently
since the equilibrium of the medium has been considerably
changed, and the experience based on the previous equilibrium
is “out-of-date” as discussed in the last section. Therefore, it can
be considered that the physics-based square rule probably en-
hances the adaptability of the existing methods. Notably, if a
new parameter is incorporated in those methods, other param-
eters probably need to be further tuned to match the function
of the square rule, which is a nontrivial manipulation.
Incorporation of other optimization algorithms with the square
rule is therefore beyond the scope of this paper.

5. CONCLUSION

In this study, a simple square rule of binary-amplitude-
modulation-based wavefront shaping optical focusing based
on universal strong scattering media has been theoretically ob-
tained. With this rule, the real-time error in the modulating
mask can be simply calculated from the concurrently measured
PBR of the optical focus. Based on such a real-time metric, a
novel feedback-based wavefront shaping algorithm, the DMA,
has been proposed. Both the simulation and experimental
results have demonstrated its high adaptability and unique
recovery ability that no other existing algorithms can achieve:
focusing of diffused light can be regained without re-running
the optimization even after a 60% drop of the PBR. This is due
to the application of the square rule, which guides the optimi-
zation with universal physics knowledge about the strong scat-
tering process instead of a random guess. Notably, the square
rule assumes that the transmission matrix of a medium follows a
circular Gaussian distribution. It can be easily fulfilled when the
transmitted medium is a strong scattering medium: photons are
multiply scattered, and most of these scattering events are in-
dependent [39]. Therefore, the square rule between the DMD
error rate and the degraded focus can be generally applied to the
process in a strong scattering regime. The algorithm is therefore
particularly suitable to be used in heavily instable or motional
scattering environments. Note that the DMA in this study
merely serves as an example application to utilize the error rate
and square rule to optimize the single-point focusing. On the
other hand, MMF is used as the example of scattering media in
this study, so that by applying rotation of certain degrees we can
induce controllable, repeatable, and quantifiable perturbations

to the resultant speckle patterns. This is necessary for the cur-
rent phase of the proof of principle, although it is not ideal.
With further improvement, we believe the study may boost
or inspire many applications of wavefront shaping with instable
media or even living biological tissue.
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